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Paper 21

PARTLY-GROOVED, EXTERNALLY-PRESSURIZED BEARINGS

.By G. G. Hirs*

In externally-pressurized bearings, forces can be transmitted by means of 2 fiuid film interposed between the
two bearing surfaces by an external source. In the conventional types, the equilibrium of external forces and
Auid film forces becomes stable by making the fluid flow through external restrictions before entering the

clearance space.

In the new types, external restrictions are superfluous. Stabiliry and load capacity are ensured by directing

the flow in the clearance space, by means of recurre

nt grooves on one of the two bearing surfaces, towards a

zone where both surfaces are plain.

INTRODUCTION

EXTERNALLY-PRESSURIZED BEARINGS incorporate external
restrictions in order that the equilibrium of external

- orces and fluid film forces remains stable. In Fig. 21,

a journal bearing with one row of external restrictions
around the circumference is depicted. In Fig. 21.2, an

_end bearing suitable for axial loads is shown; the bearing

incorporates one central external restriction. The direc-
tions of the fluid flow are also shown in the figures. The
flow can be seen to be subjected to two passages in series,
the first passage being determined by the external restric-

tion, and the second by the thickness of the lubricant film -

near the restriction. Then, pressures downstream of a
restriction will tend to increase if the local film thickness
decreases, and vice versa. This phenomenon is shown in
Fig. 21.2, by comparing the pressure distribution for a
small and great film thickness; the fluid film below the
journal can be seen to behave as a spring. This property is
a prerequisite to the stability of external forces and fluid
film forces in equilibrium.

Adams (1)t and Mannan ez al. (2) describe externally-
pressurized journal bearings in which the external restric-
tions were eliminated—see Figs 21.3 and 21.4, respectively.
Although the authors do not mention it, thrust bearings
can be redesigned analogously—see Figs 21.5 and 21.6,
respectively. The bearings of Figs 21.3-21.7 have one
feature in common with the bearings incorporating exter-
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nal restrictions—a fluid flow is subjected to different
passages connected in series. However, all passages are
determined by film thicknesses in the present case, which
is in contrast to the conventional types of Figs 21.1 and
21.2. By comparing the pressure distribution at a small
and a great film thickness in Fig. 21.5, it can be seen that
the lubricant film in these new types also behaves as a
spring. However, the stiffness of the lubricant film is
attributed to differences in the height of the pressure
distribution for the two positions in the bearing of Fig.
21.2, whereas the stiffness of the Jubricant film is attributed
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Fig. 21.1. Journal bearing with external restrictions
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to differences in the overall shape of the pressure distri-
bution for the two positions in the bearing of Fig. 21.5.

In the journal bearings of Figs 21.3 and 21.4, the con-
ditions governing the pressure distribution are more
complicated than in the thrust bearings of Figs 21.5 and
21.6, as soon as the journal bearings run eccentrically.
Then the rotational symmetry of the pressure distribution
vanishes. It has to vanish, because radial forces can be
counteracted only if pressure differences around the cir-
cumference of the journal are generated. The demand for
rotationally asymmetric pressure build-up in journal bear-
ings implies that journal bearings without external re-
strictions, see Figs 21.3 and 21.4, are less promising. They
can be expected to obtain a smaller load-carrying capacity,
and a greater power consumption, than the bearing of
Fig. 21.1 at an identical feeding pressure and identical
radial clearance, width, and diameter. This drawback
arises from the need for greater clearances than the radial
clearance ko over part of the bearing surfaces in Figs 21.3
and 21.4. Pressure differences around the circumference
of the journal will be greatly suppressed by short-circuiting
flows over such areas. It seems obvious now that short-
circuiting flows in these journal bearings need to be
counteracted. Only one method is available: a decrease in
the passages to circumferential flow without affecting the
passages to axial flow. Thus, part of one of the bearing
surfaces is provided with a pattern of recurrent axial
grooves; see Fig. 21.7. This journal bearing may be con-

sidered as a further development of the bearing of Fig..

21.3. The thrust bearing of Fig. 21.5 can be redesigned
analogou.iy, see Fig. 21.8. The radial grooves will sup-
press tausential short-circuiting flows. Then, the grooved
bearings of Fig. 21.8 will counteract skewing forces more
effectively than the thrust bearing of Fig. 21.5.

In the following, attention will in particular be devoted
to grooved journal bearings.

Notation

F Dimensionless restriction.
H (= h/h,) Dimensionless film thickness.
h Film thickness. -

ho Radial clearance.
1 Axial co-ordinate. .
Iy Axial length of a grooved and a plain zone.
P Dimensionless pressure.
P, Load capacity in dimensionless form for the
incompressible case.
P Pressure.
Pm Mean pressure per unit projected bearing
area.
Pos D1 Ambient pressure and feeding pressure, re-
spectively, for a compressible lubricant.
Ap Pressure difference across axial length [, for
an incompressible lubricant. -
[0) Energy consumption per unit time.
-q Energy consumption per unit area and unit
time.

G. G. HIRS

Gm Mean energy consumption per unit area and
unit time.

R ' Gas constant. ;

R, Load capacity in dimensionless form for the - -
_ compressible case. |

r Radius.

7 i Temperature,

aT Temperature difference. z

Vi Ratio of groove width to wavelength. _

8 Ratio of the film thicknesses in a groove and

; on a dam, journal and bearing concentric. .

€ - Ratio of eccentricity and radial clearance.

7 Dynamic viscosity.
A(=1/r) Axial co-ordinate in dimensionless form.
0 - Ratio of the length /, to the radius.

A Ratio of the length of the plain zone and the .
radius. : '

A Ratio of the length of the grooved zone and
the radius. =

p Density.

@ Circumferential co-ordinate.

dis Por- Mass flows per unit width.

s Pos Pt Dimensionless flows.

Subscript

m Denotes an averaged quantity.

_ PRESSURE BUILD-UP FOR AN
INCOMPRESSIBLE LUBRICANT AND A
. UNIFORM VISCOSITY
In two previous publications (3) (4) the bearing surfaces
were provided with grooves for reasons other than those
discussed in the introduction to this paper. The derivation
of the pressure distribution proceeds along identical lines
in the present case. The number of grooves around the
circumference is assumed to be very great. Fig. 21.9
depicts an eccentric cross-section of the bearing. If both
surfaces are plain, the film thickness can be represented by

h = hy(1+e€ cos ¢)
If grooves are present on one of the surfaces, their depths
have to be superimposed upon :
ho(14€ cos @)

If, for instance, grooves with a rectangular cross-section
are cut into one of the surfaces, the film thickness can
either be represented by

= ho(l+€ecosg) or h = hy(8+e€cosg)
The parameter § gives the ratio of the film thicknesses in a
groove and on a dam, when journal and bearing are con-
centric with respect to one another.

The two general expressions for the mass flows in a
lubricant film can now be represented:

___;og‘ga s
b=, 51" 1 et
e Pk ;
=28 ol B 01

b = T2grop
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Fig. 218. Radiab'y—growed thrust bearing

FILM THICKNESS,
EITHER

(1+¢ cos $)hg
OR
(6+e cos ) hg

Fig. 21.9. Cross-section journal bearing

L}
1

Ak

- Fig. 21.10. Groove and dam

: PARTLY-GROOVED, EXTERNALLY-PRESSURIZED BEARINGS 227
| 0-4
W W
1 ” Ry
- — ] o2
-1y — S —
r e [ —
[ - { - _+.
e 3
Il _], % B 0
_ ST
%
A 0-02
Fxlé. 21.7. Partly-grooved journal bearing
NEO‘O' /-
=

] 10
Py/Po

Fig. 21.11. Influence of compressibility

in which the co-ordinate / represents the axial direction
and the co-ordinate ¢ the circumferential direction; see
Fig. 21.7. The two equations can be derived from the
Navier-Stokes equations by imposing the usual assump-
tions of lubrication analysis. Equations (21.1) and (21.2)
do not demand that the film thickness be specified. How-
ever, some general properties of pressure and flow can be
noted which are attributable to the wave-like character of
the film thickness. Pressure and flow can thus be expected
to incorporate a wave-like component but these wave-like
components are not of direct interest to present knowledge
of these bearings. )

Therefore, equations (21.1) and (21.2) will be stripped
of all wave-like components. The assumption that the
number of grooves be very great simplifies this procedure.
It can be carried out whilst assuming the co-ordinate ¢ to
be almost constant. It also means that the gradient,
¢pfél, density p, and flow ¢,, can be regarded as uniform
when travelling in the direction ¢ across a wavelength.
Then, equation (21.1) can be subjected to a connection
in parallel, and equation (21.2) to a connection in series.

It follows that &

il 37 7%

—p (@ Y <1 N 4
f Trap "L":E:(@)mclzha)m 4,

_ in which the subscript m indicates the quantities averaged
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over one wavelength. The two equations clearly show that
all wave-like quantities are now extinct, and that different
passages are attached to the grooved surface for the two
. directions of pressure flow.

The two passages are defined for a groove of rect-
angular cross-section:

(B = {(1—y)(1+¢ cos )+ ¥(3+e cos ¢)*}hg?

(21.5)
e ho?
(1/B%)m  [(1—9)/(1+€ cos #)°1+[7/(8+¢ cos ¢)°]
. = (21.6)

in which the parameter y denotes the width of the groove
with respect to that of the wavelength; see Fig. 21.10.

It is convenient to make use of dimensionless quantities
in the mathematical treatment:

1 P h_

A= ;: P= ‘A_p: H= h_oj
_12(¢) 124007
B dpt Y b=y

where 4p indicates the excess pressure in the central feed-
2z groove. Then, equations (21.3) and (21.4) can be
rewritten:

epP
b= — = (HY), (21.7)
g i
$o = e (U, " (21.8)
1he continuity condition demands that
s | o
T T 0 (21.9)

Equations (21.7), (21.8), and (21.9) give the prcss;ﬁre
distribution over the whole bearing area. For the zone
where the two bearing surfaces are plain, parameter § = 1

or y = 0 require to be inserted. The boundary conditions -

to equation (21.9) are:
P=0at ) =0;

P and ¢, continuous at A = A, where the plain zone
passes into the grooved zone;

and P=1 at XA = \;+),, indicating that p = 4p in
the central feeding groove*, ¢

In solving the pressure distribution in journal bearings,
perturbation methods with respect to eccentricity have
been shown to give reliable results. Therefore, a series
expansion for dimensionless pressure P is introduced:

P = (P ot (P Vs s+ PV wist o+ (21,10)
in which the superscripts indicate the number of differenti-

ations with respect to eccentricity ¢ before asserting that
eccentricity e vanishes. The treatment is now confined to

~ the components P° and P'—see Appendix 21.I. The
. . resultant of the pressures due to the first-order perturba-

* Other boundary conditions at A = 0 and A = A+ X are feasible, as

- long as the dimensionless pressure in the feeding groove (X = A, +42)

1. exceeds the dimensionless ambient pressure (A — 0) by unity.

tion with respect to eccentricity ¢ can be obtained by
integrating the component P’ cos ¢; it will be directly
opposite to the eccentricity vector e. It follows that:

1 n Al-ia\, . _prn d ;
PmeoL “"”’““Pd’*=(e@)m-
(21.11)

The dimensionless number P,, denoting the load capacity,

is expressed as a function of the parameters y, 8, Ao, and A,

in Appendix 21.1. It can be shown that the number P, re-.
duces to zero for the following limiting conditions:

(1) A, = 0, no plain zone.

(2) A2 = 0, no grooved zone.

(3) y = 0, vanishing grooves.

(4) & = 1, vanishing grooves.
Thus, it can be expected that sets of optimum parameters
exist for which the number P, obtains extreme values
other than zero. ;

ENERGY CONSUMPTION FOR AN
INCOMPRESSIBLE LUBRICANT
For assessing the energy consumption per unit area of the
mating surfaces g, the dimensionless flow ¢, must be
determined. If journal and bearing are concentric, it
follows from equation (21.7), by making use of the con-
tinuity condition at the boundary where the plain zone
passes into the grooved zone, that -

0 (H)m
é}\ =5 _( 3 )
)"I(H )m+“2 e=0
in which the flow ¢,° can be regarded as the first compon-
ent of a series expansion of the flow ¢, analogous to
equation (21.10).
By definition:

(21-.12)

° 12(¢))m, e - o
W= hidp
phe” 4dp -
The average energy consumption per unit area of the
mating surfaces is expressed by
1t _fj_f (éi)m. €= 0
Iy P
Eliminating the axial flow (¢,),. (.o from the above two
identities:

. (21.13)

: 12¢nrl,

qﬁ,\ = _'Ap'z haa
A somewhat simpler expression can be derived if the total
energy consumption Q = 2r 21, is inserted:

° 3 O

AT T Ap? ket _

And thus the dimensionless flow $,° shows how it de-
pends on the energy consumption. _ o S

(21.14)

OPTIMIZING BEARING PARAMETERS FOR
AN INCOMPRESSIBLE LUBRICANT

Formulae, whose extreme values had to be determined, 7
have been programmed for a digital computer and, next,

* they have been subjected to an optimization process. In

"



= process, a continuous non-linear function of up to six
fe-cndent variables could be minimized by a refined
2%ient technique; see Dickinson (6).

he three quantities, whose extreme values will be pro-
ged, are:

(1) The load capacity as a result of a first-order pertur-
ion with respect to eccentricity is given indimensionless
rm in equation (21.11). By looking for maximum values
the ratio p,/4p at several values for the length-radius
tio A, the feeding pressure will contribute as much as

s<sible to the load capacity and to the stiffness of the -

>aTing. : -

(2) A different criterion evolves by demanding that a
eat load capacity should be obtained at a small energy
ynsumption. This criterion can be expressed by eliminat-
g the feeding pressure 4p from equations (21.11) and
1.14). -

It follows that

. ot szhua o 3 e N1 :

| e = (BFGOT  @LS)

(3) Another criterion evolves by demanding that a
reat load capacity should be obtained at a small through-_
low. The criterion can be expressed by eliminating the
eeding pressure 4p from equations (21.11) and (21.13).

It follows that

B 3
L B Py($")?

£¢-p? ks
nd
‘?5: = 2‘1‘?2((;’5;),“( -0 (21 1 6) “

n which ¢, denotes the total volume flow over the two
Lalves of the bearing in unit ime. '

In other words: the three criteria for optimizing demand
‘hat the load capacity shall be as great as possible while
zeeping either the feeding pressure, or the energy con-
sumption, or the through-flow as small as possible.

Tn this paper, results on the optimization will be given
for length-radius ratios A = Lir= 15 2,3 and 4. By
maintaining this ratio constant from the outset, three
dimensionless variables v, 8, and A; remain to be opti-
mized. The optimization Process requires that they be
provided with upper and lower limits. The lower limits to
the parameters y and A are of great importance in this
respect. In offering 2 resistance as great as possible to cir-
‘—umferential flow, the parameter y tended to become too
'small for practical purposes, and the parameter § tended

to become rather great. Therefore, the lower limit to para- -’

~meter y has been held at values which could be expected to
\be adequate in actual applications (y = 0-1, 0-2, 0-3, and

)-5).

‘reached the imposed lower limit in the long run. The para-
meter A, had to be provided with a lower limit when the
“guantity P,, equation (21.11), was subjected to the opti- '
mization process. Otherwise, it would tend to become too .
small for practical purposes, and the energy consumption

In the optimization process, the parameter y always .-

-
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Table 21.1. Data for partly-grooved journal bearings using
an incompressible lubricant

R | %] = !(mew Py
o1 | 494 | 0100 | 10 | —0415 © —0-0291 —0-070
o1 | 237 | 0100 | 1-0 |- —0268 | —00121 —0-045
o1 | 353 | 0216 | 10 | —0325 | —00384 —0-118 .
01 | 289 | 0355 | 10 | —0243 | —00323 —0-134
02 | 398 | 0700 | 10 | —0390 | —00254 —0:065
02 | 290 | 0207 | 10 | —0306 | —00324 —0-106
02 | 237 | 0351 | 10 | —0224 | —00271 —0-121
03 | 352 | 0100 | 10 | —0-374 | —00231 —0-062
03 | 260 | 0201 | 1-0 | —0-294 | —0:0289 7 —0098
03 | 212 | 0350 | 1-0 | —0:212 | —0:0239 —0-113
04 | 323 | 0100 | 10 | —0-361 | —00213 —0-059
04 | 240 | 0197 | 10 | —0284 | —00263 —0-093.
04 | 194 | 0363 | 1.0 | —0197 | —0-0211 ‘ —0-107
05 | 302 | 0100 | 10 | =0350 | —0:0199 —0-057
05 | 227 | 0193 | 10 | —0-275 | —0:0243 —0-088
05 | 184 | 0350 | 1:0 | —0193 | —00199 0103
01 | 623 | 0100 | 2:0 | —0448 1 —00352 | —0-079
01 | 376 | 0-384 | 20 | —0311 —0.0621 —0-200
o1 |30z | 0692 | 20-| —0221 | —oo0s10 | —0231
02 | 500 | 0100 | 20 | —0-425 | —00314 —0-074
02 | 311 | 0363 | 20 | —0204 | —00521 | —0177
02 | 2.48 | 0687 | 220 | —0-202 | —00421 | —0-208
03 | 441 | 0100 | 20 | —0409 | —00288 —0-070
03 | 279 | 0350 | 2.0 | —0281 | —00457 \ —0-163
03 | 221 | 0688 | 20 | —0189 | —0:0365 —0-193
05 | 379 | 0100 | 2:0 | —0-383 | —00248 \ —0:065
05 | 2.46 | 0328 | 20 | —0:261 | —00367 | —0141
05 | 192 | 0701 | 20 —0167 | —00286 | —0-171
o1 | 714 | 0100 | 30 | —0455 | —00369 | —0081
o1 | 411 | 0-481 | 30 | —0297 ;| —00706 | —0238
01, 320 | 1:000 | 30 | —0193 I —00553 | —0286
02 | 574 | 0100 | 30 | —0-43¢ | —0:0330 | —0-076
02 | 340 | 0449 | 30 | —0281 l —p-0588 | —0-209
02 | 262 | 0998 | 30 | —0176 | —00451 \ —0-256
03 | 506 | 0100 | 30 | —0-4/8 | —00303 | —0072
03 | 307 | 0423 | 30 | —0270 —0-0509 ‘ —0-188
03 | 234 | 1000 | 30 | —0-163 | —00383 | —0233
05 | 436 | 0-100 | 30 | —0390 | —00257 —0-066
05 | 2776 | 0377 | 30 | —0252 | —0:03%0 —0-155
05 | 202 | 1040 | 3.0 | —0139 | —0:0282 —0-203
01 | 790 | 0-100 | 40 | —0-435 | —00368 —0-081
o1 | 452 | 0515 | 40 | —0286 | —00703 —0-246
o1 | 339 | 1280 | 40 | —0-168 | —00519 —0-309
02 | 636 | 0100 | 40 | —0-435 | —00330 | —007¢
o2 | 376 | 0471 | 40 | —0274 | —0-0583 —0-213
02 |28 | 1280 | 40 | —0152 | —00418 —0-275
03 | 561 0100 | 40 | —0419 | —00303 —0:072
03 | 342 | 0-434 | 40 | —0264 | —0:0500 —0-189
03 | 248 | 1290 | 40 | —0139 | —00349 —0-251
05 | 484 | 0100 | 40 | —0-389 | —00254 —0-065
05 | 312 | 0363 | 40 | —0250 | —0:0371 —0-149
05 | 214 | 1370 | 40 | —0-114 | —0:0242 —0-212

.

would become excessive. The lower limit imposed upon
the parameter A, amounted to 0-1 in all optimizations.
When optimizing the quantities  (Py)*(¢x°)* and
Py(¢,°) ", the parameter ), always exceeded this lower
limit. T :

‘Now that the limiting conditions are known, the results
of the optimization process can be discussed. The para-
meters and the dependent quantities are given in Table
21.1. Equations (21.11), (21.15), and (21.16) explain the

dependent quantities in physical terms. Values shown in -5t
~ jtalic figures indicate that the quantity in question has i.%

T
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been subjected to the optimization process. Other

.  dependent quantities have been computed using the

parameters found in the optimization of this quantity.
The first two cases presented in Table 21.1 show how
the quantity P, has been optimized for a groove with a
lower limit y = 0-1, and for the step bearing of Fig. 21.3
(y = 1). The favourable influence of the grooves in sup-
~ pressing short-circuiting flows is now evident. By compar-
- ing the two quantities P,, it is seen that the load capacity
of the grooved bearing exceeds that of the step bearing
by more than 50 per cent at identical feeding pressures.
‘By comparing the two quantities (P,)*($,°)~?, equation
(21.15), it is seen that the energy consumption of the

"~ grooved U ring amounts to about 40 per cent of that of
~ the step braring at an identical load capacity, radial clear-

" ance, and viscosity.
Apart £:.vm the second row in Table 21.1, all data con-
cern the paitly-grooved bearing. It is seen that increasing
groove widths go hand in hand with lower extreme values

~ to the three dependent quantities because of decreasing

resistances to short-circuiting flows. By comparing the
quantities (P,)*(¢,°)"!, it can be seen again that the
number incorporating the energy consumption will be
affected most. It can also be seen that bearings with the
greater length-radius ratios suffer more from decreasing
resistances to short-circuiting flows than bearings with the
smaller length-radius ratios.

" PRESSURE BUILD-UP FOR A COMPRESSIBLE

LUBRICANT SUCH AS A GAS
Experience with the conventional types of gas-lubricated
bearings indicates that the flow may be considered
isothermal. Then, equations (21.3) and (21.4) can be
made suitable for gas lubrication by inserting

-2
. RT °
and assuming the temperature T to be uniform.
The meaning of the quantities P and ¢, equations (21.3)
and (21 4), will now be extended to compressible flow:

(21.17)

po P, M@)arRT

) T2 TN (22 —20Dhe®
: 24&)°,T;rRT

and - = —
. Pe = (i —poDhe’

in whlch p1 denotes the pressure in the feeding groove,
and p, is the ambient pressure. The quantities A = I/r and
H = hfh, remain unchanged. Equations (21.7), (21.8), and

- (21.9) adequately account for the compressible case,

In Appendix 24.1, the first two components of the
series expansion of the quantity P, equation (21.10), have

~been obtained. Thus the pressure build-up for small .

- eccentricities can be expressed by:

P

oy = P o)

’

(P“)lf? +

The load capacity, expressed as a resultant of the pres-
sures directly opposite to the eccentricity vector, is now

derived:
).11-).2 25 P* cos (P -

e L illbeas T80T
e _

P ; - :
=—2 _— 21.18
(‘(P12“P02)”2)s -0 ( )

The solution to this integral is discussed in Appendix -
21.1. The load capacity R, evolves as a function of the
bearing parameters y, 8, A; and A, and the new parameter
P1/po representing the ratio of the feeding pressure to the

_ ambient pressure.

It can again be assumed that equation (21.18) is approxi-
mately valid up to reasonably great eccentricities.

ENERGY CONSUMPTION FOR A
COMPRESSIBLE LUBRICANT
In the preceding a new definition for the dimensionless
flow ¢, has been presented. By confining the treatment to
concentrical operation, it reads:

d) o __ 24(95{)1“ € -o’?rRT
¥ (P12 —=po®)ho®
and cquatmn (21.12) shows its dependence on the bearing

parameters. The energy consumption per unit area for
concentrical operation is expressed by:

i~ s

where pressure p and density p are not uniform in the
axial direction. Otherwise, the expression for energy con-
sumption ¢ strongly resembles the one for incompressible
flow, in that a pressure differential is multiplied by a
volume flow per unit width. Using this expression, and
equations (21.17) and (21.19), the following expression for
the dimensionless flow ¢,° can be built up:

Y el
N (P2 —poDhot \p dl
Thus, the dimensionless flow ¢,° can be expressed in

terms of the average energy consumption per unit area
gm, and the ratio of the feeding pressure and the ambient

pressure p, /po:
24q, 77l

"= —
X (P1*—poPh® In (Pl/pu)
A somewhat simpler expression evolves if the total energy
consumption, Q = 2a72lyq,., is inserted:

55 6 On -
=

7 (P12 —po®)ho® In (p1/p0)
OPTIMIZING BEARING PARAMETERS FOR

A COMPRESSIBLE LUBRICANT

Two dimensionless quantities, whose extreme values will
be provided, are: - :

(21.19)

(21.20)

(1) The load capacity in dimensionless form is given in
equation (21.18). By looking for extreme values of that
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number at several values for the length-radius ratio A; and
the pressure ratio p,/p,, the feeding pressure will contri-
bute as much as possible to the load capacity and to the
stiffness of the bearing.

(2) By eliminating the quantity (p,®*—p,*®) between
equations (21.18) and (21.20), it follows that: : .

“ pmzho® In 6
.Pm OEZQE?PH‘PO) — _; (Rl)z(tb{);\o)hl (21.21) A
Extreme values of the quantity (R;)%(¢,°)~* would result
in the highest load capacity for given width, diameter,
| pressure ratio, viscosity, and radial clearance at the Jowest
\energy consumption. '
In the present case, ilic optimization process is not
applied. In a preliminary search for extreme values to
the two quantities, it could be demonstrated that the
related optimum parameters y, 8, and A, are almost con-
stant throughout the whole range of pressure ratios
p1/pe < 12 for each length-radius ratio. This feature is
demonstrated for a few cases in Appendix 21.11. Thus
‘optimum parameters of the incompressible case remain
valid for the compressible case. Therefore the contents of
Table 21.1 can be extended to the compressible case by
'using the optimum parameters and computing the two
dependent quantities indicated above, at several values of
the pressure ratio. In order to avoid an excessive number
_of data, the treatment is confined to only one of the lower
limits foc the parameter y (= 0-1). The data are given in
" Table 21.2. (Italic figures denote extreme values of the
guantity in question. The other quantity is computed
vsing the cptimum parameters.) Fig. 21.11 shows the two
quantities dependent on the pressure ratio p,/p, for a
given set of grocve parameters. It can be seen that the two

i_‘quantjn'cs asymptotically reach maximum values.

n

3 COMPARISON BETWEEN NEW AND
JCONVENTIONAL EXTERNALLY-PRESSURIZED
- ; JOURNAL BEARINGS

w This comparison is restricted to the theoretical work con-
s tained in the present paper as far as the new bearing type is
) concerned. Unique properties of the partly-grooved,
dexternally-pressurized bearing as an actual machine ele-
., ment will evolve in a future paper on experiments with and
;japplications of these bearings. Moreover, the comparison
s is restricted to two properties previously mentioned:

Al =

»

{ (1) The contribution of the feeding pressure to the load
“capacity; see equations (21.11) and (21.18) for the in-
‘compressible and the compicssible case, respectively.
. (2) The contribution of the energy input to the load
if«'.‘apa(:ity; see equations (21.15) and (21.21), respectively.
* Data concerning these two properties presented in Tables
“21.1 and 21.2 for the new type should be compared with
fthose concerning the conventional bearing type. The
‘source - for data concerning the conventional type is
= Pinkus and Sternlicht (7). The comparison is restricted to
" laminar feeding (turbulent feeding gives somewhat better
results; turbulent flow in the grooves mightalso be studied).
IR RN

Table 21.2. Data for partly-grooved journal bearings using a
compressible lubricant

¥ I & } Ay i Ao iPn"Pc l[ R,

! (Ry)*(a™) 2
01 | 494 [ 0100 | 10! .11 | —0-089 —0:0013
01 | 353 | 0216 | 10 | 1-1 —0-070 —0-0018
01 | 494 | 0100 | 1-:0 | 15 | —0:170 —0-0049
01 | 353 | 0216 | 10| 15 | —0135 —0-0067
01 | 494 | 0100 | 1-0 [ 2:0 | —0207 —0:0072
01 | 353 | 0216 | 1-0 20 | —0166 —0:0100
01 | 494 | 0100 | 10| 40 —0-243 —0:0100
01| 353 | 0216 [ 10| 40 | —0-198 —0:0143
01 | 494 | 0100 | 10 60 | —0250 —0:0106
01 | 353 | 0216 | 1-0 60 | —0-205 —0-0153
01 | 494 | 0100 | 1-0 | 1220 | —0-255 —0:0110
01 | 353 | 0216 | 1-0 | 120 | —0-209 —0-0159
01 | 623 | 0100 | 20 11 —0-096 —0-0016
01 | 376 | 0384 | 20 11 —0-067 —0-0029
01 | 523 | 0100 | 20 1-5 —0-184 —0-0059
01 | 376 | 0384 | 20 15 —0:-129 —0-0107
01 | 623 | 0100 | 20 20 | —0222 —0-0087
01 | 376 | 0384 | 20| 20 | —0158 —0-0160
01 | 623 | 0100 | 201 40 | —0260 —0-0119
01 | 376 | 0334 | 20| 40 | —0188 | —00226
01 | 623 | 0100 | 20 | 60 | —0268 | —0-0126
01 | 376 | 0384 | 20| 60 | —0194 | —0-0242
01 | 623 | 0100 | 20| 120 | —0272 | —0-0130
01 { 376 | 0384 | 20 | 120 | —0198 —0:0252
01 | 714 | 0100 | 30 1-1 —0-097 —0-0017
01 | 411 | 0481 | 30 1-1 —0-064 —0-0033

01 | 714 | 0100 | 30| 15 | —0187 —0-0062 _
01 | 411 | 0481 ‘ 30| 15 | —0123 | —0012]
01 | 714 | 0100 | 30| 20 —0-226 —0:0001 °
01 | 411 | 0481 | 30| 20 | —0150 —0-0179
01 | 714 | 0-100 ‘ 30 | 40 —0-264 —0:0124
01 | 411 . 0481 | 30! 40 —0-177 —0-0252
01! 714 ! 0100 | 30 60 | —027] —0:0131
01 { 411 | 0481 |30, 60 | —0183 —0-0269
01 | 714 | 0100 | 30 | 120 | —0-276 —0-0135
01 | 411 ‘ 0-481 | 3-0 | 120 | —0-187 —0-0280
01 | 790 | 0100 | 40 1-1 — 0097 —0-0017
01 | 452 | 0515 | 40 1-1 —0:061 —0-0032
01 | 790 | 0100 | 40 15 | —0186 —0-0062
01 | 452 | 0515 | 40 15 | —0-118 —0-0120
01 | 790 | 0100 | 40 |. 20 | —0-225 —0-0090
01 | 452 | 0515 | 40| 20 | —0-143 —0:0177
01 | 790 | 0100 | 40 | 40 | —0-263 —0:0123
01 | 452 | 0515 | 40| 40 | —0169 —0-0246
01 | 790 | 0100 | 40| 60 | —0-270 —0-0130
01 | 452 | 0515 |- 40 60 | —0175 —0-0262
o1 | 790 | 0100 | 40 | 1220 | —0:275 —0-0134
01 | 452 | 0515 | 40 | 120 | —0-178 —0:0272

The comparison is also restricted to journal bearings with
one central row of a sufficiently great number of restric-
tions. For the incompressible case equations 6.13 and 6.28
of Pinkus and Sternlicht (7) can be used in evaluating the
quantities P, and ¢,°. They are rewritten in Appendix
21.11. The results of the comparison appear in Table 21.3
for a few width-diameter ratios. It is seen that the way in
which the feeding pressure contributes to the load capacity

"(P,) is similar for the two cases. However, the power input

and the through-flow (¢,°) are much less favourable for the
new type of bearing. This can be explained by comparing
the greatly different resistances to pressure flow in the
two bearing types, Figs 21.1 and 21.7, at identical radial
clearances. By combining the two quantities P, and ¢,° as
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Table 21.3. Comparison between new and conventional bearing types using incompressible lubricants

| : '

Type Pt [ A o F P, $:° | (PR

| : _

' 10 1146 0-473 0-534 10419

10 0598 0426 0374 0-486

g :

5 2:0 1-440 0-301 0-295 0-308

Restrgtion 2:0 0-799 0277 0222 | 0346
30 1-736 0-190 0212 | 0170 -

3.0 1:003 0-177 0167 0-188

- 01 494 0100 10 _ 0-415 5-018 0-029
01 3.53 0216 1-0 / 0-325 2751 0038

0-1 623 0100 2:0 0-448 5702 0-035

Groaye 01 3.76 0384 2:0 0-311 1-558 0062

01 7-14 0:100 3-0 0-455 5-610 0-037

01 411 0-481 3-0 | 0297 1249 0071

Table 21.4. Comparison between new and conventional bearing types using compressible lubricants

i |
I T R A

z : | '

Type | ¥ | 1 1/Po l Ao i
Restriction . . | E ' ‘ 6 | o095 | 033 | o7 0150
Groove | 01 1| 353 ‘ ~ 0216 6 j 1-00 | 0-21 i 2.7 0-015
Groove . i 01 | 4-94 l 0-100 } 6 I 1-00 | 0-25 5-9 0-011
2 | 1 !

in equation (21.15), it can be seen that identical mean
pressures, radial clearances, eccentricities, and viscosities
for the two bearing types require that the energy consump-
+ion for the grooved bearing shall be approximately ten
times greater than that for the bearing with external
restrictions. The energy consumption can obtain the same

- order of magnitude for the two cases by adapting the

radial clearance. The radial clearance for a grooved
bearmg should be 2-2-5 times smaller than that for a bear-
ing with external restrictions, if mean pressures, eccen-
tricities (e), viscosities and energy consumptions are equal
for the two cases. The radial clearances need to_be
diminished far less drastically if it is required that the
stiffnesses of the lubricant film (p,/eh,) be equal for the
two cases. For that matter, the radial clearance for a
grooved bearing should be 1-5-1-7 times smaller than that

for a bearing with external restrictions, if the stiffnesses, -

viscosities, and energy consumptions are equal for the two
cases.

For compressible lubricants the comparison proceeds
along identical lines. In this respect, Figs. 6.2 and 6.3 in

Pinkus and Sternlicht (7) are extremely useful. Table 21.4

presents the comparison for one value of the width-dia-

. meter ratio and for one value of the ratio of the f(.ed.mg )
pressure to the ambient pressure. - : :

F CONCGEUSIONS [ 5" S fia s araitmgy
The parﬂy grooved externally- pressunzed )oumal bear— : 1S
ing is promising so far as the contribution of the feeding
pressure to the load capac:ry and the bca:mg stiffness are .
conccmcd A campanson with bearings 1ncorporatmg

external restrictions shows that the energy consumption
tends to be greater in the new type. The use of this bearing
in practice now depends on the simple fabrication and the
elegant way of taking it up in a design. These points will
be discussed in a future paper.

The theory presented in the present paper has been
restricted to static behaviour. Sliding and squeezing will
be accounted for in future work. If hydrodynamic action
also includes sliding and squeezing, grooves might well be

" inclined with respect to the direction of sliding motion in

order to improve load capacity, stiffness, and stability. To
this end, the work contained in the present paper and that
in reference (4) on self-acting grooved bearings need to
be combined and extended. Inclined grooves also present
the possibility of exerting a driving action on the rotatable
member; see (3).

. ACKNOWLEDGEMENTS
The work reported in this paper is part of a research pro-
gramme on grooved bearings and seals being carried out
at the Institute T.N.O. for Mechanical Constructions,

. Delft, Holland.

The author wishes to thank Professor H. Blok of the
Technological University, Delft, for his continuing interest
in the subject and also Mr J. P. J. Lamers for mathematical
aid,. o : ey e

APPENDIX 21.1
From equations (21.7) and (21.12) the dimensionless pressure

* gradient dP°/dA can be obtained for a plain as well as a grooved

zone. The use of an incompressible lubricant does not demand the

spemﬁcanon of boundary condmons to P°.
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I
2
Table 21.5. Parameters changing stepuwise
! | | [ 5

y 5 A | % Palpo | R,

01 4-36 01 1-0 60 —0-252

01 4-46 01 1-0 60 —0-253

01 456 0-1 1-0 60 —0:254

01 | 466 0-1 10 60 —0-253

01 476 01 1-0 6-0 —0-253

01 484 |- 01 1-0 60 —0-252

01 494 01 1-0 60 —0-250
01 504 01 10 6-0 —0-248

01 706 | 01 | 40 6-0 —0274

01 716 | 01 40 60 —0:274

01 7-26 01 40 60 —0:275

01 7-36 o1 ! 40 60 —0-274

01 7-46 01 | 40 6-0 —0:274

01 7-80 01 4.0 60 —0-271

01 790 | 01 4.0 60 —0-270

01 8-00 : 01 40 “6:0 —0:269

An explicit solution for P’ is:
P'=(Ae*+Be Mcosg
where 4 and B are constants, and
T
a= - |
.Hs)ﬂ'lJtv'ﬂ
The quantity a reduces to unity at the plain zone. Boundary
conditions are:
P =0atd=0
P’ znd $', continuous at A = A,
P =0atd= M+
'I'bc bearing is plain for 0 < A < A}, and it is grooved for
1 < AT 4,).
'I‘hc Tull soluticn to P’ allows for an integration as in equation
(21.11%swhich ulumately results in:

oA S 3(H3—H:)Tf
200+ 2)(AMHs 4 242) =
a sinh aAy(cosh A, —1)+sinh A, (cosh @, —1)
a sinh al; cosh A; +(1/H,35) sinh A, cosh aly
where Hjy 3= (H*%, .20

1
Higre [<5e
A (H:’)m.z-‘ﬂ

Numerical results are shown in Table 21.1.

The full solutions to P’ and P° allow for an integration as in
equation (21.18). The full solution to P° has not yet been discussed.
One boundary condition needs to be specified in order to make the
full sclution possible:

P = Po?

— at A=0
Pi*—po*

. Thus P°, over the plain zone, is given by:

Po? AHjy
= H A
TRy, O<A<W
and F°, over the grooved zone, is given by:
i : PO5t 1 A],Ha A—Al f
£ _plﬂ_,pon ¥ ',‘I.Ha‘i‘l‘z M s ()'1 <A< (Al'l')'&!))

The method employed for solving the integral in equation (21.18)

reduces to a numerical approximation by means of a nineteenth

degree polynomial.
dogs APPENDIX 21.1I
In Table 21.5 1t is shown that the optimum parameter §, when

- searching for an extreme value to quantity R,, tends to scarcely

Table 21.6. Optimum parameters for incompressible and
compressible lubricants and related dependent gquantiry

|
vl s | n | % || R Ry
01 3-30 0-207 1-0 6:0 —0-202 —0-0157
01 3-53 0-216 10 60 —0-205 —0-:0153
01 3-51 0-362 20 60 —0:192 —0-0249
01 376 0-384 2:0 60 —0-194 —0-0242
01 3-82 0-443 30 6-0 —0-182 —0:0278
01 4-11 0-481 3-0 6-0 —0183 —0-0269
01 420 0-460 4-0 6:0 —0175 —0-0272
01 4-52 0-515 40 6:0 —0-175 —0-0262

Parameters on even lines from Table 21.1.

alter at a substantial influence of compressibility. This property
could be found by altering the parameter  stepwise and computing
the related quantity R;.

In Table 21.6 it is shown thar the optimum parameters & and A,,
when searching for an extreme value to the guantty (R;)%(¢.%) "2,
hardly alter at a substantial influence of compressibility. For the
few cases indicated in Table 21.6, extreme values to the dependent
quantity in question and the oprimum parameters have been deter-
mined. They have been compared with parameters used in Table
21.2 and the related quantity (R,)?(¢,") 1

= APPENDIX 21.1I1I
Equations 6.13 and 6.28 of Pinkus and Sternlicht (7) are rewritten

as follows:
F

= ROTE
P Flcosh A, —1)

1T 2 A1+ F)(X cosh X+ F sinh A;)

An extreme value of the quantity P; can be obtained by looking
for the related optimum parameter F:

F; = (Ap coth Xp)¥/2

An extreme value of the quantity (P,)*¢,°)"? can be obtained

by looking for the related optimum parameter F:
= }{(1 +8X coth Ag)*2—1}

which is equivalent to an equation in reference (7). The numerical
results for three width—diameter ratios appear in Table 21.3.

APPENDIX 21.1V
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