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1. SCOPE

The purpeses of this thesis on the turbulent lubricant film are:

to give a brief outline and a general formulation of a newly
developed semi-empirical theory, which ithe author prefers to name
"pulk-flow theory';

to examine to what extent experimental results published in

literature agree with this theory;

to investigate to what extent results of theories based on law=-
~of-wall and mixing-length concept agree with the bulk-flow

theorys

to provide a sound theoretiecal basis for the selection and the
design of bearings for liquid-sodium pumps and for other applic-
ations in which fluids of low kinematic viscosity are used as
lubricants.

film
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(3)
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1, Do=?

De doelstellingen van dit proefschrif$ over de turbulente smeer-
zijn:

een beschrijving en c¢en algemene formulering van sen door de

auteur ontwikkelde, semi-empirische theorie;

een onderzoek nazr de mate van overeenstemming van aan de litera-

tuur ontleende, experimentele resultaten met deze theorie;

een onderzoek naar de mate van overeenstemming van de nieuve
thecrie e#n theorieén gebaseerd op de wandwet en het menglengte

principes

het verschaffen van een gezonde theoretische hasis voor de keunze
en het ontwerp van lagers voor vlceibasr-natrium pompen e€n voor
andere toepassingen waarin media met lage kinematische viscosi-

teit als smeermiddel gebruikt worden.




2. SUMMARY

A newly developed semi-empirical theory, the so-called "bulk-
flow theory", allows pressures, flow rates and shear stresses in a
turbulent lubricant film to be calculated, and, also, the further in-
formation, required for the design of turbulent lubricant film hear-

ings, o be determined.

The suthor gave an outline of this theory and made a comprehen-
sive study of literature on other theories and on experiments with
turbulent flow in lubricant films or comparable flow channels.
sufficient experimental data were found to warrant the conclusion
that the bulk-flow theory is reliable for bearings with smooth, un-
grooved, plane surfaces in the operational range covered by these
deta. Additional tests were shown to be needed on flows in between
surfaces differing from the above-specified ones, viz,.:

(1) curved surfaces

(2) non-equidistant surfaces

(3) rough surfaces

(4) arooved surfaces.

Additional tests counld provide:

(a) & clearer insight into the question to which extent the

bulk-flow theory is valid with the above-deseribed surfaces

(b) fitted, more widely applicable, values for the empirical

constants to be subsiituted in the bulk-flow theory.

Apart from this, such an investigation makes it pessible to
design more efficient bearings., For instance, it would appear
possible t0 increase the load-carrying capacity and decrease energy
consumption by giving part of one surface, or of both surfaces, a

rough instead of & smooth finish or by giving part of one surface &

pattern of shallow grooves.

It should be noted that it is of limited importance to meke mors
tests with bearing surfaces of types (1) and (2) above. it least
estimates of load-carrying capacity and energy consumption”of bear-
ings with the usual small clearances, based on existing theory, have

proved to be less than 20 per cent too low.

From the comparison with reéults obtained from theories based
on the law-of-wall and on the mixing-length concept, the newly
developed bulk-flow theory emerges as the more reliable one in =a
grester range. This is due to the fact thet physical models underlying
the former i{wo theories have a limited range of applicability. In
the bulk-flow theory, however, no use is made of any physical model
whatsoever for the turbulence mechanism. Instead of & model, =
correlatlonal ohservation was utilized in developing and fitting the
present theory. That is, it was observed thet there is a correiation
between wall-ghear stress, mean or bulk-flow velooity, film thick-_
ness, density, viscosity, and that this correlation is only weakly
dependent on the nature of the flow in the lubricant film; whether
éhis is "presasure flow", under the influence ef a pressure gradient,
or "drag flow" due to sliding of a surface, or any combinafion of
these two basic types of flow. Further, the mean flow velocity in
the most general type of flow, and relative to a bearing surfacse,
oould be conceived to be aftributable to a represéntative presgsure
gradient. This representative gradient is defined as the sum of the
real pressure gradient which accounts for the real pressure flow
component and a fictitious pressure gradient which accounts for the
other flow component: the drag-flow component. Thus, for any turbul-
ent film two equations between representative pressure gradient and
mean flow veloclty can be established, one for either bearing sur-
face. These two equations suffice for determining preasures, flow

rates and shear gstresses in turbulent lubricant films.

The last part of the thegis is devoted to design directives for
turbulent self-acting fluid film bearings. It proves to be a major
benefit of the bulk-flow theory that such directives can he cast

into an exitremely simple and concise form.
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2. SAMENVATTING

Het een nieuwe, semi-empirische theorie, die "bulk-flow theory"
gedoopt werd, is het mogelijk om drukken, stromen en schuifspannin.
gen in een turbulepte smeerfilm te bepalen en ook om de verdere inw
formatie, die voor het ontwerpen van lagers met een turbulente cmeer-

film nodig is, te verkrijgen.

De auteur gaf een beschrijving van deze theorie en maakte esn
literatuurstudie over andere theoriedn en ever experimenten aan tur-
bulente stroming in smeerfilmen of vergelijkbare siromingskanalen.
Voldoende experimentele gegevens werden gevonden om te kunnen conclu-
deren dat de nisuwe theorie'bruikbaar is voor lagers met gladde, on-
gegroefde, viakke loopvlakken,

Aangetoond werd det meer proeven nodig zijn met stroming tussen

loopvlakken met de volgende, van het bovenstasnde afwijkende, eigen-
schappen:

1 gekromd
2 niet~parallel
3 ruw

4 gegroefd.

Zulke gsanvullende proeven zouden leiden tott

a}) uitbreiding van inzicht in de mate van geldigheid van de nieuwe
theorie voor deze loopvlakken

b) aangepaste, meer algemeen geldende waarden voor de empirische
rongtanten die in de nieuwe theorie toegepast moeten wordern.
Bovendien zullen zanvullende proeven het mogelijk maken betere
lagers te ontwerpen. Zo is het bijvoorbeeld mogelijk het drasgvermo-
gen te verhogen en het energieverbruik te verlagen van lagers met ge-
heel of gedeeltelijk ruwe loopvlakken of van lagers waarvan &4&n der

loopvlakken voorzien ig van een batroon van ondiepe groswven.

Het belang van aanvullende proeven met loopvlakken van de typen
(1} en (2) is beperkt. Schattingen van draagvermogen en energiever-
bruik van lagers met de gebruikelijke kleine spelingen, gebaseerd op
bestaande theoretische gegevens, bleken minder dan 20 procent te laag

te zijn.

Uit een vergelijking met theorieén gebapeerd op de wandwet en
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het menglengte-principe, bleek de nieuwe theorie over een groter ge-
bied de meest betrouwbare te zijn, Dit is te danken aan het feit dat
physische modellen, die de basis vormen van de eerste twee theoriedn,
sleochts in een heperkt gebied geldig zijn. In de nleuwe theorie, daar-
entegen, wordt &£&&n model van het turbulentie-mechanisme toegepast.
In plaats van een physisoh model werd een correlerende waarneming ge-
bruikt veor het ontwikkelen en aanpamssen van de theorie. Het bleek
namelijk dat er een correlatie van wandschuifspanning, gemiddelde
stroomsnelheid, filmdikte, dlchtheld en viscositeit bestsat en dat
deze correlatie slechis zwak afhankelijk is van het {ype stroming in
de smeerfilm {"drukstroming" onder invloed van een drukgradient,
"gleurstroming” ten gevolge van het glijden van een loopvlak of een
combinetie van deze twee basistypen). De gemiddelde stroomsnelheid
ten opziohte van esn loopvlaek kan dan toegeschreven worden aan een
representatieves drukgradient. Deze representatieve drukgradient is
per definitie de sonm van de werkelijke drukgradient, die verbonden

is met de druketromingscomponent en een flcotieve drukgradient, die
verbonden is met de andere stromingsoomponent: sleurstromingscompo-
nent. Voor elke turbulente smeerfilm kunnen dus twee vergelijkingen
tussen eaﬁ representatieve drukgradient en een gemiddelde stroomsnel-
heid opgesteld worden: &én vergelijking voor elk loopvlak. Dezs twee
vergelijkingen zijn voldoende voor het bepalen van drukken, siromen

en schuifspanningen in turbulente smeerfilmen.

Het laatstes deel van dit proefschrift 1s gewijd aan een ont-
werpmethode vaor turbulente,tzelfwerkende glijlagers. Eén van de be-
langrijkste veoordelen van ds nieuwe theorie is het felt dat deze me-

thode uiterst eenvoudig en beknopt blijkt te kunnen zijn.
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3. INTRODUCTION

The bulk-flow theory for turbulent lubricant films is useful
for applications in which process fluids with low kinematic viscos-
ities are used as lubricants. However, the major incentive to develop
the theory was found in the rather hostile conditions prevailing in

large sodium pumps for nuclear breeder~reactars.

When pumping high-temperature liguid sodium with a centrifugal
pump, it is not possible to lubricate all the bearings with some
conventional, high viscosity lubricant. At least one bearing (the
one nearest the pump impeller) cannot very well be lubricated other-
wise than with the process liquid itself, i.e. sodium. This means
that here there is no real choice between the two main t¥pes of bear-
ings: rolling-element bearing or fluid-film besaring. Indeed, the
former must immediately be discarded, the concentrated contaoct
between counterformal surfaces and the resulting high contact giress
¢ having proved disastrous when high temperature, liguid sodium ia
used a8 a lubricant. This appears e.g. from tests with various com-
binations of surfaces, immersed in sodium. With fluid-film bearings,
however, the surfaces are conformal and contact stresses are lower,
Besides, with fluid-film bearings it is pousible, due to the conform-
ity of the surfaces, to reduce contact between the surfaces to a
minimum by providing fdr & continucus lubricant film which 1s much
thiocker than the differential heat distortion, and than the GOompos-
ite height of the irregularities due to machining, etec.

In this report we are not concerned with the selection of sur-
face materials for these fluid film bearings but we will foocus our
attention on the lubricant film between the surfaces. More particul-
arly, we will consider the pressure build-up and flow in such a
lubricany film, for, therefrom, the load-cerrying capacity, leakage,
and energy oonsumption for bearings with lubricﬁnt films can be
derived. Especially irn the case of lubrication with sodium, it is
necessary to pay meticulous attention to these factors since:

(1) when sodium is used as lubricant, the lubricant film will in
general be turbulent whilst inertia effects other than those
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due to turbulence may also ocour in the film and these effects
make it difficult to predict the performance of these bearings
wilth sufficient acocuracy;

(2) in case of jamming or rapid wear of a bearing, pumpe for liquid
sodium reguire more expensive repsir than pumps for other process
liquids and/or pumps not lubricated with the process liguld but
with a lubricsting oil. In other words, sodium pumps require
bearings of a highly dependable design but the available data do
not suffice for making such a design.

It must be emphasized that a well designed bearing is not all

by itself a guarantee for satisfactory operation of the pump as a

whole. As an example of what may go wrong in a pump with a properly

designed bearing we may mention axially asymmetrical heat distortion
of the pump casing. When such a distortion occours, the sodium~lubric-
ated bearing, ﬁhether or not operating in conjunciion with & second
begring, will have to bend the shafi in such a way that the surface
of the former bearing may meintain its separation from the shaft sur-
face by a lubricant fiim. Since the maximum hydrodynamically attain-
able force exerted on the shaft by externally pressurized bearings

is proportional to the square of the shaft diameter whilst the bend-

ing force to be exerted by & bearing is proportional to the fourth

power of the shaft diameter, it will be obvious that, if the other
dimensions and operating conditions are held fixed, the diameter of
the shaft should be selected as small as possible. Indeed, then the
maximum sxially asymmetricel heat distortion of the pump casing will
affeot the proper operation of the pump least adversely, Yet, when
designing sodium pumps, the shaft diameter ia usually chosen rather
lerge in order +eo keep criti&al gpeeds esbove the normal speed range.

The diameter could be made much smaller if the torque to be trans-

mitted were the only factor of considerastion. Therefare, sodium pumps

should preferably be provided with thin shafts and flexure due %o

saupercritical running should be reduced e.g. by a damper as was done

by Voorhees (1967)!2

It would be ouieide the scope of this report to discuss the
entire design of a pump, and even the various designs of the bearing
can only be briefly described, see Fig. l:QWith any of these designs
it is in principle possible to achieve a lubricent film of acceptable

mninimum thieckness in = sodium pump.

1) See List of References, p. 68. ") See page 17.
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The bearing shown in Fig. la is the self-acting plain cylindric-
sl bearing., It owes its load.carrying capacity ito the pumping action
in the bearing proper: due to the sliding of one of the surfaces, the
lubricant is forced into a converging wedge-shaped slit, and this
induces an increase in pressure if inertia effects in the flowing

t
liguid are not dominant.

The bearing of Fig. 1b is the self-acting bearing with a sym-
metrical groove pattern. This bearing owes its load-carrying capaci-
t¥ not only to the aforementioned wedge effect but slso to the pump-
ing action of the grooves. An zdvantage of this type of bearing is
the greater stability towardsdisturbances of the eguilibrium between
the resultant of the forces set up in the lubricant film and the

n)

external force acting on the bearing.

The self-acting tilting-pad bearing, Fig. lo, has much lower
lead-carrying capacity than the bearings of Figs. la and lb but its
"t
stability is very goced. )

Regarding the three self-acting bearings of Figs. la, 1b and le,
it should be noted that for large sodium pumps it is very difficult,
if not impossible, to provide for sufficient losd-carrying capacity
with the correspondingly large minimum film thickness to be aimed at.
Fortunately, the excess pressure created by the pump impeller can
alsc be used to incresse the lomd-carrying capacity, i.e. by change-
ing over from selfwacting t¢ externally pressurized bearings. Indeed,
the pump itself may be utilized as the external pressure scurce for

the latter type of bearings.

The bearing shown in Fig. 1d is an externally pressurized ¢ylin-
drical bearing with externel restrictions in the form of circum-
Hy
ferential slot=s, )The sketch shows that external restrictions are
t) Numerous textbooks give information abkout this bearing when
operating in a laminar regime. Smith and Puller (1956%, Duffin

and Johnson (1966) and Ketola and Mc Hugh (1967) give inform-
ation in the turbulent regime.

") For laminar operation see Hirs (1965) and for turbulent operat-
ion Chow and Vohr (1969).

1) For both laminar and turbulent operation see Orcuti {1967).

"}  For laminar operation see numerous texthooks, for turbulent
operation of a elightly modified bearing, see Roberts and
Betts (1969).
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indispensable for c¢reating pressure differences along the clroum-

ference, i.e, for creating load-carrying capacity.

The bearing of Fig. le has locally recessed zones, the external
restrictions being in the form of capillaries or orificea.| Its
load~carrying capacity is higher than that of the bearing of Fig. 1d,
especially with largsr width/diameter ratlios.

4 third type of externally pressurized bearing is shown in

Pig., 1f; the left-hand side of the bearing is the high-pressure side.

" The main difference between this bearing and the two previous types

is the absence of external restrictions and the presence of shellew
axial grooves on the journal. It will be seen from Fig. 1f that, by
virtue of thease groovea, differences in pressure may be generated
slong the ciroumference of the shaft so that they will result in
lpged~carrying capaclty.“) The load—carrylng cgpacity of this bearing
proves to be approximately the same as thet of the bearing of Fig, 1d.
All three types of externally pressurized bearings show good stabili-
ty of the equilibrium between the resultant of the forces created in
the lubricant film and the external force. As comparsd with the other
types, the bearing of Fig. le is at some disadvantage, due to the in-
effectiveness of damping the deviations from the equilibrium position

of the shaft relative to the bearing.

In this brief review of externally presaurized bearings the
effect of the sliding of a surface on the turbulent operation of the
bearing has so far ®een left out of consideration:”) Especially with
smaller radial clearances, the effect of sliding of a surface results
in much poorer stability of the unrecessed bearing of Fig. 14 and in
e decrease in load-carrying capacity of the recessed bearing of Fig.
le, Both the stability and the load-carrying capascity of the bearing
of Fig. 1f change but little due to the sliding of a surface. The
only type of bearing known to the author in which both the external

pressurigation and the pumping effeoct due %o the sliding of a surface

t) See last footnote on page 14.
"} For laminar opermstion see Hirs (1966).
"0 Little has been published until now about this subject; Yamagda's

work (1962) ia the main source from which the overall properties
have been derived.




mgiiat&bngiy.improva the load-carrying capacity as well as the stabil-
_i%#}ig_the cne shown in Fig. lg. For that rsason, it seems justified

to term the bearing of Pig. 1g a truly "hybrid"™ bearing.

Theofetical and experimental work is envisaged to take intp
account the turbulence and the other inertia effects ocourring in the
lubricant filme in the various types of bearings of Pig. 1 vhen a
loweviscosity fluid, such as sodium, is used. Such work would enable
any typé of bearing to be optimized for its maximum load-carrying
capacity and/or atability. Alseo, one may then quantitatively compare
the various bearing types eof Fig. 1 with one another. Optimization
of the bearing of Fig. lg, whioh would probably emerge as the best

deaign, would obviously be the mest laborious piece of work.

Naturally, load-carrying capacity and stability are not the
only factors that ﬁlay & role in gelecting the type of bvearing. Sinm-
plicity of design, for instance, is preobably most conspicuocus in the
bearing of Fig. la (which however is not praotioal in mos% applicat-

ions), and in the bearings of Figs. 14 and 1f.

it is perhaps needless to say that optimization will not only
result in the optimum design parameters giving the highest stability
and/or the highest load-carrying capacity of these bearings, but also
in the utmost reliability. This is due to the fact that insufficient-
ly centrallable deviations from the design parameters ﬁhich, for inw
stanoe through the workshap tolerances, ﬁill always ocour in actual
practice, will have less disastrous oconsequences according as these
design parameters correspond better with the optimum design parame-
ters. In fac$, not only is an optimum worth aiming at all for itself,
but also for the valuable feature thdt in its wvicinity the sensitivi~
ty of performance toward deviations from the opitimum naturally uses

to be much smaller than somewhere far off the optimum.
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4, DIFFERENT THEQORIES OF THE TURBULENT LUBRICANT FILM

4,1. Purely fundamental theory.

It is more difficult to prediet pressure build-up and flow in a
turbulent lubricanf film than in a laminar lubricant film since the
Navier-Stokes eguations, which are applicabls to both types of lubri-
cant film, cannot be sufficiently simplified in the case of the tur-

bulent lubricant film to cbtain equations with simple solutions.

Moreover, the existing and commonly used simplificetion method
for turbulent flow, consleting in averaging the fluctuations in ve-
locity of flow, pressure and density or combinations thereof, cver an
agceptably large period of time and an aoceptably large area, results
in a number of additional unkﬁown factors in the equations. These un-
known faotors, especially the averages of products of flow veloecity
fluctuations, cannot yet be determined theoretically. One might try
to measure them in lubricant films for a large number of cases and to
use the experimental data for substituting into, and thus solving,
the Navier~Stokes eguations. Although sufficient experimentsel daie are
not yet available, this method has been shown to be promising, as is
evidenced by the tests of Carper et al (1963), Laufer (1954) and Rei-
hardt {(1956) on flow under the influence of a pressure gradient in a
chennel of rectangular cross section, and of those of Burton (1967)
on flow induced in fhe annulus between cylindrical'surfaces by the slid-
ing of one of these surfaces, in Bome cases even combined with a flow
component under the influence of a pressure gradient. However, the
measuring pracedure cencerned (hot-wire method) is very laborious and,
moreover, it seems difficult (considering some remarks in the above-

mentioned public&tions) to obtain reliable results.

Solving the Navier-Stokes eguations with the aid of suoh experi-
mental data is no doubt the most fundamental approach nowedeys availe
ble for predicting the pressure build-up and flow in a turbulent lu-
bricant film. However, the computational effort{ invelved is exireme-
ly large. It ig evident that this method does net rapidly yield re-
sults and that it is a rather complicated one for calculating the

load-carrying capacity and leakage of turbulent bearings. Also in
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view of the promising initial resulis obtained in a piece of fundamen-
tal research by Burton (1967), it is recommended to rerform siuch in-
vestigations in = laboratory especially devoted to the fundamental
aspects of turbulence as a genersl discipline, Such investiéations
would permit a critical judgement of the less fundamental theories
discussed in the following paragraphs and of the bearing caloulations
there made or of those to be made in the future on +the bamis of these
theories,

4.2. Mixing-length theory.

4 prediction of pressure build-up and flow in a turbulent lubri-
cant film is possible on the basis of a theory developed by Conetan-

tinescu (1969), and based on the classical mixing-length concept.

4.%. Law-of-wall theory,

This theory (adapted by Elrod and Ng (1967) to the turbulent
lubricant film) is based on the hypothesie that there is a universal
shape of the time-averaged and suitably normalized porﬁiens of the
flow-velocity profile that_ara in the vicinity of the surfaces bound-
ing the lubricent film.

The hypotheses of both theories permit to confine oneself to a
limited number of measurements of flow velocity profiles, to derive
therefrom certain hypothetical constants, and then to calculate flow
velocity profiles for all combinations of the two components of flow,
that is, "pressure flow" under influence of a pressure gradient and
"drag flow" due to the sliding of a surface. A shortcoming of beth
theories is thé fact that, as appears e.g. from Burton's experimenta,
the hypotheses are, not sufficlently applicable to all points of the
lubricant film and to all operating conditions. Yet, EBurton (196?)
concludes that both caloulating methods eventually yield flow veloci-
ty profiles which do not depart too much from the actual ones. It nay
be added here that experiments by Orcutt (1967) and others with a
tilting-pad bearing (Fig. lc) show that the load-carrying cepsecity
can be accurately predicted by the law-of-wall theory. Judging from
Constantinesou's findings (1967 and 1969), reasonable agreement with
experimental results oan probably also be achieved by using the mix-
ing-length theory.
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Why then is i% not to be recommended to base further calculations of
bearings a8 shown in Fig. 1 on one of these two theeories? The reasons

are the following:

(a) with both the mixing-length theory and the law-of-wéll theory,
flow velccity profiles must be determined for a sufficient number
of combinatiens ef the drag flow and pressure flew components;
this determination will require much computation; the resuliing
profiles can only be integrated numerically to yield bulk-flow

velooitieny

(v) empirical constants necessary for predicting these profiles must

he fitted to messurements of actual flow velocity profilesy

(¢) sc far these empirical constants are known only for smooth and
flat surfaces and for flow without inertia effects; hence, so as
to enable extensions to computational work, much supplementary
experimental work would have to be done in order to further deve-

lop the two methods concerned;
{d) computetions based on these two theories have so far besn made
only for selfwacting bearings;

(e) in the regime of low Reynolds numbers (1000-10,000), which is im-
portant for bearings, the {wo theories give results that deviate
from experiments becsuse, as will be shown in chapter 7, the un-

derlying physicael models are not valid in this regime.

4.4. Mid-channel velooity theory.

Burton (1967) was aware of the above-mentioned shortcomings and
arrived at & much simpler theoretical approach by interrelating all
basic charscteristics of & lubricant film, such as pressure gradient,
sliding velocity of a surface, and shear stresses at eigher surface,
to a chafaoteristic velocity of flow in the lubricant film, the "mid-
channel velocity", defined as the one at the midplane between the two
surfaces. He succeeded in deoing this by using simplified time-averag-
ed, flow-velocity profiles. This theory is indeed sc simple that in-
ertia effeots in the flow can readily be included in the caloulat-
ions. However, computations based on this method have again been con-

fined to very simple types of self-acting bearings and an extension
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of this theory to externaliy preasurized and hybrid bearings would

appear exiremely difficuls,

4.5, Bulk-flow theory.

All of the three abovementioned theories are based on informat-

ion obtained from experiments regarding:

{a) fluotuating velocity components due to turbulence;
or
(b) veloecity profiles so time-averaged as to eliminate fluctuating

velocity components.

It hes been suffiociently demonstrated in the feregoing that this
appreach is subject to difficulties in measuring velooities of flow
and in processing the experimentaljdata. Therefore, tha author has
made an attempt at a sufficlently accurate description of pressure
build-up and flow in a lubricant film that is bhased on correlational
data about bulk-flow relative t¢ each of the two bearing surfaces. It
proves indeed possible to develop a theory on the basis-of such in-
formation and to calculate quite a variety of bearing types, self act-

ing, hybrid as well as externally preasurized ones.

This bulk-flow theory is based on an analogy between turbulentg
flow under the influence of a pressure gradient and the ene due to
the sliding of a surface. It had been found already by Davies and
White (1929) and Couette (1830), respectively, that in either type
of turbulent flow the wall shear stress depends on density, viscosiiy
mean flow velocity with respeot to the particular surface for which
the ghear streés is considered, and thickness of the fluid film. Com-
bining their findings, it can be shown that in either type the repre~
sentation of this dependency reqguires, as a minimum, two dimension-
less groups, e.g. a friction factor and a Reynolds number. When plot-
ting these dimensionless groups against each other in graphs, it is
striking, that in the turbulent regime the curve representing experi-
ments for pressure flow is remarkably olose to that representing drag

]
flow. )

Thus, 1t can be concluded that the dependency of the two dimens-
ionless groups and, thus, the dependency of wall shear siress on den-
sity, viscosity, mean flow velocit{y with respect to the surface con-

1) Burton (1967) has found an even closer agreement between the two flow
types when using mid-channel velocity instead of mean flow veleocity.

&
3
%
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cerned and film thickness is fairly insensitive toward the type of
flow in the lubricant film. The author has found evidence that these
dependencies are alsc insensitive to fairly general kinds of combin-
ations of the two flow componsnis such as mutually ?erpendicular
flows, one being a pressure flow and the other a drag flow. Ii is the
insensitivity of wall shear strese to the type of flow that has led
the suthor to a treatment of flow in lubricant films that ias made
unifying in that a pressure gradient is introduced as a criterion not
only for pressure flow but also for drag flow, the latter pressure-
gradient being, of course, a fictitious one. Thus, the actual rate

of flow in a lubricant film with respect to each one of the surfaces
can be treated, as if it consists of two superimposed flow components,
one under the influence of the actual pressure gradient and the other
under the influsnce of the fic¢titious pressure gradient. Through this
treantment flow in lubricant films with sliding surfaces can be freat-
ed in & manner comparablé to that for flow in lubricant films wifh
stationary surfaces. Moreover, the experimental information needed
may be confined to the dependency of frietion factor on Reynolds num-
ber for.real pressure flow, i.e. the one under the influence of an

actual pressure gradient.

This theeis will also deal with a method of incorporating, in
the present theory, inertia effects in the flow, other than those in-
herent in turbulence. In addition, it will be demongirated that the
effects of roughness and grooving of surfaces on the film interposed

can be accounted for in this theory in a most simple way.
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5. QUTLINE OF THE BULK-FLOW THEORY

The main characteristic of the bulk-flow theory of the turbulent
lubricant film is the faet that 1t dees not make use of any expliecit
information, nor of any model, oni
(1) fluctuations of local velocities of flow dus te turbulence;

(2) the shape of flow velocity prefiles frem which fluctuating
' components have been sliminated throug averaging.

In this theory only the rate of bulkflew relative to s surface

oer wall and the cerreaponding shear stress at that surface or wall

under a given set of oonditions of turbulent flow are congldered and

correlated.

The author's approach ialesﬁentially a logical extension {o ha-
gie weork done by Blasius (1913) on turbulent "pressure flow", i,e.
under the influence of a pressure gradient,in a pipe, by Davies and
White (1929) on a similar fiow Pei{ween itwoe statienary parallel sur-
faces, by Couette (1890) on turbulent "drag flow" betwesn two oconcen-
tric cylindrical surfaces due to the aliding of one surface, and by
investigatorse who later have added experimental resulis of related
types of flows to the previous pioneer work. Briefly summarized, the
pregent theory is primarily based on the empirical finding that the
relationship betwesn wall-shear siress and mean velocity of flow re-
lative t¢ the wall at vhieh the shear stress is exerted can be ex-
pressed by a formula cemmon to "pressure flow" and "drag flow” and

also to any combination of these two basic types of flow:

pu h m
11 7 =4 { 1? ) (la)‘)
2Py
where

1
)Other more concise and more general expressions have heen develop-
ad., The present two dimensionleas groups and the power law form
have been chosen for histerical and praci{ical reasons. Indeed,
Blasius published his experimental results by assigning velues to

n end m, a form of presenting data still most widely used.

2%

wall-shear stiress
density of flowing fluid

dynemioc viscosity ef flowing fluid

F =2 1 =
B

mean velocity of flew relative to wall or
surface at which shesar stress T is exertsd

h = £ilm thickness.

n oand_ empirical numerieal censtants to be fitted to the available
B experimental resulte throughout the range covered
pu_h ")
L b
7 = Re HReynelds number,
and
11 5 = friciion faoctor
2Py

Tn the above formule, the friction feoter depends only weekly
on the Heynolds number, In all experimental results aveilable this
property is evident from the fect that the @-values come close to

zere, falling in the range -0.5< m< O.

Values for n and m fltted to individual experiments will be

given in chapter 6. These values will be shown to depend,\albeit

rather weakly, on:
(1) the roughness of the surfaces;
(2) the curvature of the surfaces;

(5) the qﬁsstion of whether or not the Reymolds number is
greater than about 100,000i

(4) the influence of inertis effects other than those inherent
in turbulence in the fleowy
(5) the types ef flow:
(a) "pressure flow" under the influwence of & pressure
gradient
(b) "drag flow" due to the sliding of a surface
(e)

the nature of the combination, 1if any, of both types
(&) and (b) as components of flow, which in the most
general cembination may even haeve non-parallel dlrec-

tions.

(6) the rates of change of all quantities indicated in formula
(ia)s these guantities may vary moderately in & lubricant
film without viclating the applicabllity of formuls {1a}

') In many publicstions, symbol Re is replaced by R or Ng.
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It is stressed that mean flow velocity u_ in formula (1a) is
taken relative to the surface at which shear stress v is exerted,
whilst bearings have two surfaces at which stresses are exerted. At
most one surface can be considered to be statienary, the other being
free to slide., Therefore, more specialized formulas than (la) are
determined for either surface. In the conveniion that is 4ypical of
the bulk~flow thecry, the frame of reference is attacheé tc the sta-
tionary surface and, acoordingly, both the mean flow wvelocity w in the
film and the sliding speed U of the sliding surface are to be taken
with respect to the frame of reference. An extra limiting condition
at this stage of the development of the theory is thas u end U are
in parallel directions. So, two formulae can now be derived, viz.,

one for the stationary surface:

T, pumh m "y
5 =0 () (1b)
2P

wnd the oiher for the sliding surface:

. "
Y n{o(um-U)h}’” (e)
o(u_-1)? K

in which the wall shear stresses are characterized by subscripis a
and b, respectively. Formula (1lb) gives shear stress To and mean flow
velocity with resapect to the stationary surface (um). Formula {lc)

giver ghear strese T, and mean fiow velocity with respect to the

b
sliding surface (um-U).

For our further outline of the bulk~flow theory i4 is usseful $o real-
ize that similarity and consistency of the twoe types of flow (flow
under the influence of a pressure gradient and flow due to the slig-
ing of a surface) is not only evident from the fact that the two re-
lationships for T have a similar form but alse from the fact that the
two veluses for n, n0 and nl, an well as the two values for m, m0 and
m, 4 differ but little. This consistency can be further clarified by
considering the two limiting cases represented by formulae (1v) and
(1le) as far as the type of flow is concerneds:

"} For physical reasons, the m th power must treated ms if it were
an odd number in order to make the functional relationship odd.
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(a) presaure flow, i.e. flow solely under the influence of a

pressure gradient (Fig. 22):

1T .
e Q

< ny () (2)
Py 0

which can be derived from formulae (1b) and (lc) by insert-
ing U=0 and which yields equal shear stresses on the fwo

surfacest T = T, = 7T
a o

b

(b} drag flow, i.e. flow solely due o the sliding of a surface

(Fig. 2b)s
4]
*1 - pum§ '
1 2 ° ™M (=) (3)
2PYy,
i
which im also based on (1b) and {l¢) and in which v = % U

- 1
for the stationary surface and u = - % T for the sliding

surface and which should be takenlto ¥yield equal but oppo-

site shear stresses on the two surfaces: Ta= -sz Tl.

Judging from experimental data to be described in chapter 6, the two
extreme oases represented by formulae (2) and (3),as specializations
of the general formulae (lb) and (1o% respeotively, do show the
abovementioned characteristic, viz,, that the value of no/nl as well
as that of mo/m1 comes close-to unity. This similarity of formulae
(2) and (3) exists despite the differences in shear stress Adistrib-
ution betweens

(1) pressure flow, see Fig. 22, with an inversely symmetrical
shear streeges distribution varying linearly with height zj

(2) drag flow due to the sliding of = surface, see Pig. 2b,.
with & constant shsar stress distributien, independent of
height 2.
The absence of any appreciable influence of the shape of the
shaar strese profile across the film on the wvalues of constants n
and m in the formulae (2) and (3) for the turbulent regime leads to

the following conclusionss
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Fig. 2a "Pressure flow'between two surfaces under the
influence of a pressure gradient.
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Fig. 2b "Drag. flow" between two surfaces due to the
sliding of one of them.

Flow component under the
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Fig. 2¢ "Turbuilent flow"”between two surfoces under the
influence of a pressure gradient and due to the
sliding of a surface,
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1. The relationship between the shear stress at a surface and the

mean veloclity of flow relative to that surface depends but littie
on the type of flow, i.e., being valid to a reasonsble approxima-

tion for pressure flow, drag flow, as well as for combinetions of
both.

For a first aepproximation, it seems useful to entirely neglect
this sensitivity of +4he shear stress at a surface {o the shape of
the veloeity profile or, say, to the type of flow. é%ch & negleci
entailes that one might ascribe an additive nature to the shear
stresses assigned 4o the two surfaces by formulae (1b) and (lc),
i.e. in that the total shesr- stress at & surface may be found by
summing the two component shear stresses shown in Pig., 2o: |

= Tyt T for the stationary surface and t.= t - v, for the

& 1 b 0 1
s1iding one. Accordingly, formulae (1b) and (lc) can be rewritten

as follows:

T TP T pumh "
I 32 = 10 3 =n { A ) for the giationary surface
2Py 2P
T, T,m T p(um- U)h "
T 5 =7 2 5 =1 —~——%————} for the siiding surface
se(u -0)°  5p(u -U)
vhere Ty = shear stress component due to the pressure flow
component
Tl = shear stress component due to the drag flow component
= 8liding speed
g = hean flow velocity with respect to stationary surface
w_ - U = mean flow veloolty with respect to sliding surface.

m

On expresaions for shear stress components T, and Ty @ complete
theory for turbulent lubrigant films could then be built{. However,
i¢ is not yet clear which values %o select for n and m, even
though 1t is known from the itwo limiting cases that their varia-
tims are fairly marrow, see formulae (2) and (3). Moreover, the
above formulae are in a form that makes it obscure how to treat
the mest general cases where v and U are in intersecting direo-
tion, such as gccurs due to side leakage in bearings having a

finite width.
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3. It is thus seen that the slight leck in conaistency of different
t¥ypes of flow as regarde their relstionships hetweon shear stress
at a surfacs and average flow velocity relative to that surface,
requires a more refined treatment than the one followed in estab-
lishing the twe formulae sub Item No. 2. Such a refined trsatment
can be based on the notion that oﬁe might reduce the desoription
of all combinations of both types of flow to a descriptien in
terms of only% one type of flow, e.g. flow under the influence of
& repregentative pressure gradient. This representative pressure
gradient might then be put egual to¢ the algebraic sum of the ac-
tual pressure gradient and of a fictiticus one which ascounts for

the drag flow component.

In this refined treatment, 1t shoﬁld be taken inte account that, for
one and the same average flow veloocity, density, viscosity and film
thickness, in either limiting case represented by formulae (2) or
(3), wall-shear siress for ane itype of flow is not exactly eguiva-
lent with walli-shear sitress for the other type of flow. In feot, the
two shear stresses, alihough not differing to any appreciable exteny,
show a ratie different from unity. This ratio may be assessed by di-
viding formula (2) by formula {3) and assuming u =u _8s well as identical

values of P, f; h for the two cases, and raplacing ui and uy by

their common value w viz., ° 1

T, n, puh o M1 (o)
i e S 4
oo 7

wvhere suffix O gtands again for pressure flow and suffix 1 for drag

flow. In the operational range so far explored, this ratio proves not
to deviate appreciably from unity. It is readily seen that the ratio
s+1ll depends on the Reyndds number, albeit raised to the very small

pover m - m, as followa:
pu_h By
(=)

In anticipation of experimental results still to he discussed, gnd

which will show m and m. to be equal within the measuring erfor,

1
it is assumed that the possible error of the approximation involved
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in putting m and m, egual may be ignored.

1
Under this sesumption it followa from formulae (2) and (3), when

putting o =w ®memn and introducing identical p,M, h for the two

o 1 1
cases, that
o B,
g =8 (4p)
1 1

in which a can be regarded to be & weighting factoer.

Since ir lubricant films the pressure build-up 1s of major im-
portance, the description of combinations of the two types of flow
will henceforth be simplified to the desecription of only one type of
flow, namely the flow under the Influence of a representatlve press-

ure gradient (dp

r} in which the influence ¢f +the drag flow compcnent
1
on the shear Bgress is included, That is, in erder to account for the

scecurrence of the drag flow component, & fictiticus pressure gradient
dp
E;l) will be introducsd and it will be added to the actual pressure

gradient (%E) S50 &8 to obitain a representative gradient. Weighting

n
factor a = EQ in formula (4b) will be used when converting the shear
1
streases Tl, which are due to the drag flow component, to the shear
stressas (at ) that are ascribed to a ficititious pressure flow compo-
dp
. . 1
nent, characterized by an equally fictitious pressure gradient (dx Ve

For the pressure flow in the steady stete to which we will here
confine ourselves, it folleows from the equilibrium between the actual
shear Btress T socting on elements dx on the two aurfaces and the ac-
tual pressures p and p 4+ dp acting on film thickness h that ETOdX =
ph -« (p+dp)h. Thus,

1dp .
To" T2 ax ® (5a)

In analogy, for drag flow, the following relationship is intro-
duced for defining the fictitious pressure gradient (dpl which iz

dx )
henceforth taken repressntetive of drag flow
' ap ' dp T
i1 —1_ =
ati= =5 Ix h, =0 that i - 2a h {(5b)
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where a is the weighting factor defined in formula {(4b).

Next we will coneider the situastion where both the pressure flew
and the drag flow are present in the same fiim and where these com-
ponentg of flow are in parallel dirsctions, ses Fig., 2c. The actual

shear stress at the stationary surface is T 10+ T (TG= shear

stress under the influence of the pressure flow component; 7= shesar

gtresa. due to the drag flow component), whilst the actual shear

stress at the sliding surface is T oo T For the rsasons explain-

ed above, it seems Jjustified to multiply the shear stress component

(11) due to drag flow by the weighting faotor a of formula (4b), mo
@pra and dpr
dx ' dx

ary and sliding surface mey Te attributed to T+ et

that representative pressure gradients for station-

and T - &7
: s}

1 1!

respectively.
4t the stationary surface we then havet

b
2

a
1°+ at., = = ax (P+P1)l

1

d(p+p, )
which does contain the repregentatlve pressure gradient ——

dx

dp
dxra generating flow with average flow velocity u relative to the

stationary surfece.

_ It follows from formulee (1) and (2) for the stationary surface
that
a i
L (o) pup
e L . (6)

2

At the sliding surface we may put:

t-at =-0L (pp)
o 1™ "2 dx ‘PP

. a(p-p;) dp_,
This givea the repreasentative pressure gradient ix ~ I genar-

ating flow with average flow velooity (um~U) relative t¢ the sliding
surface (in which U aliding epeed).

1t folleows for the sliding surface from formulae (1) and (2)

P
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p(um—U)h_me

-b &= (p-p,)
dx P Pl - no {____T'_} (6b)

p(u 1)

The fictitious pressure gradient can be eliminated from these
two formulae {6a) and (6b). Thus, the actuel preasure gradient can be
determined for any combinetion of pressure flow and drag flow, pro-
vided that average velocity L and sliding speed U have parallel di-

rac+inrnag, as has tacitly bean assumed above:

2 yun U (u JU)2 p(u_-U)n ™
detoki SRS A ks Wkl D] (6c)

dp _ 1
dx 2 no[ SR + n 7

If the inertia effects other than those inherent in the turbulence
character of the flow are negligible, it is now possible $o0 forthwith
determine the pressure build-up and loadacarrYing capacity of bear-
ings having no side leakage (which would result in crons-flow)

i.e. bearings having infinite width. It is remarkable that,lby alim-
inating the fictitious pressure gradient, the magnitude of weighting
faotor a in formula (4b) or of factor n, in formula (3) 'does not af-

fect in any way the magnitude of the actuel pressure gradient in {6c)

One may also eliminate the actual pressure gradient from (6a)
and (6b) and obtain the following expression for the fictitiocus press-

ure gradient

2 m 2 m
dp, 1. pu, puh o_ p(um-U) l,p(um—'ﬂ)h} o (63)
dx 2 7ol h n h Uy !
In formule (5b)
dp T n_ 1
1 1 o 1
dx = - 2& h = - 2 ™ h
1
the importance of weighting factor a does become evident.
Then, shear stress due to drag flow can be derived:
m m
T = |pul (pumb) °. (u -U)Q{nggzgli} ° (6e)
1~ 72 81|P% " PRy ki

Thus, empirical constant nl appears to be tied up with expressions

for shear strems due to drag flow in the same way as previously shown
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in the less general formula {3). For that matter, empirical constant
n  appears to be tied up with actual pressure gradients and shear
stresses due to actual pressure gradients, sse formula (6c) and the

less general formula (2).

The above method of determining the pressure build-up in a tur-
btulent lubricant film of infinite width can be generalized to iubri-
cant films of finite width, i.e. with "cross-flow" wheras the presé—
ure flow component and the drag flow cemponent are not parsllsl to

each other.
To this end it is assumed:

(1) that a fictitious pressure component may still be conceived in

the lubricant film so as to account for the drag flow ocmponent;

(2) that for the stationary surface & relation can be given between,
on the one hand, the gradient of the representative,pressure be-
ing the algebraic sum of the actual pressure plus the additional
fiotitious pressure, and, on the other hand, the mean velocity
of flow relative to the stationery surface, the density, the vis-

cosity, and the film thickness, in accerdance with equation (6a);

(5) that for the sliding esurface a relation can bhe given between, on
the one hand, the gradient of the representative total pressure
being the algebraic sum of actual pressure minus the fictitiocus
pressure and, on the other hand; the mean velocity of flow rela-
tive to the sliding surfsoce, the density, the viscosity and the

film thickness, in accordance with equagion (6b);

d

p
(4) that the total or Tesultant representative gradiant,z;z, and the
reasultant mean veleocity of fiow, us, for ene and the same sur-

face have the same directiony

(5) thaet such direetions for stationary and sliding surface will not
necaessarily ocoinocide,.
These assumptions, and (4) and (%) in particular, lead to the
folleowing slightly generalilzed form-of (fa) and (6b):
ap

r m
-k 35 . (push) 0
puc O T
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~ where ceo-ordinate s and suffix s indicate the common direction of

the resultmnt pressure gradient and the resultant mean flow veloo-

itys

- where for the stationary surface, the pressure gradient d§& is
a(p + »;) 8(p,+ »y)
the vectorial resultant of components B T and ——-7;§—-, and

vhere mean velocity us.is the vectorial resultent of components

u_ and u_j
X ¥

dp
- where, for the sliding surface, the pressure gradient dib is the
- alp - p,) a(r_- ;)
. o 1 0 1
vectorial resultant of components % and 3y y and

where mean veleocity u_ is the vectorial resultant of flow compo-

nents (ux~U) and uy.

- where the x-y co-ordinate system lies in the plane of, and is at-
tached $9, the stationary surface;

- where x is the sliding directiionj

- where the y direction is at right angles to the 2liding directlon;

- and where ux and uy sre the mean velocitles of flow relative to the

X- and y-directions, respeciively.

Thus, equations for the stationary and the sliding surface c¢an be
derived:

(1) Stationary surface. By suitable resolving the resultant represen~

tative pressure gradient

dp__ d{p_+ p;) 1
ra o 1 .2, 2\
3o ™ is and the resultant mean flow velocity uSH(ux+uy)2
in x and y-directions, it follows from formula (6f)
m
1/2 Yo
- n€(p+p,) p(u2 + w¥) "k .
m Vi a
pu (u2+ 1;3.2’)"]'/—2 © K
XV x oy
m
1/2 o
- nd(pen)) plude u2) " n
' = n (71)

Z =
puy(ux+ u§)1/2 0 N
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(2) Sliding surfsoe. By suitable resolving the resultant gradient

dp d(p_- p;) 1
rb o) 1 2 24
T = P and velooity u, = {(ux- U)“+ uy}? in x and

y directions, it follews from formula (6f)

& Cony) [ pl(u 0% w2}/2 n] o)

p(u —U){(u )%+ 5}1/2 " b

-h g; (p-py) . [P{(“x—U)2+ u§}1/2 h (78)
puy{(ux-U)2+ u5}1/2 ° M

In the original limiting case of parallel flev directions
(where the flow component uy, at right angles to the sliding direc
tion of the surface, reduces to zero), equation (7a) indeed reduces
to (6a) and equation (7c) to (6b).

Equations (7a-d4) have been writfen in such & way that the fio-
titioua presesure gradients can be easily eliminated. Therefrom, equa-
tions can be derived that yleld gradients of the actual pressure in

the lubricant film, as follows:

» 1+4m
M)
20U 8x “pUh
1+mo 1+m0
l 2, 2 2 27 2
L { LU0 02 B (00 (1) o) (8a)
l+m
_BS 2o (L
10 dy ‘pUh
1+mO 1+mo
1 2 2\—— _1)8, 42
=3 no[Uy(Ux +0)2 + Uy{(Ux-l) + Uy} 2 (8b)
where
u u
Ux- ﬁﬁ and Uy- ax are normalized velocities of flow. (Bb)

Thig way of formulating the basiec equations for the furbulent
lubricant film has advantages in comparing theoretical and experi-
mental results. It can be shown from the above derivation that only
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& minimum of experimental information is required for proving the

theory to¢ be valid and determining the empirical constants.

(a) We should be able to derive the m?gnitudes of n_ and'mO from
simple experiments with unidirectional {ypes ef turbulent flows
(see formula (2)). One may confine oneself even to a flow expe-
riment in which pressure flow, i.e. under the influence of a
pressurs gradient, 18 the only type of flow %o ococur. It is par-
ticularly the magnitude of SR thet matters. The magnitude ef m
need not be known accurately, provided its absolute value is muoh
smaller than unity, since in the formulae (8a) and (8b) it ap-

pears only to the % (l+m0)th powar.

{b) We should be able to derive the guantities ny and my (see formula
{3)) from experiments with drag flow, i.e. due to the sliding of
one of the two surfaces. If however, only the pressure build-up
in a bearing ls reguired, it would suffice to determine whether
n1 and ml do not'deviate teo much from n0 and mo, regpectively.,
In fect, it proved possible, thanks to the introduction of a fic-
titious pressure, to derive the equations (Ba) and (8b) for the -
pressure build-up in which the quentities n, and mi no longer

appsear.

A disadvantage of the above way of formulating equations for
flow in the turbulent lubricant film might be the fact that average
flow velocities are not known a priori. Accordingly, these equations
cannot be ingserted in the equations expressing the continuity condi-
tion to yielid differeniial equations for the pressure build-up. A
feasible way of formulating such differential equations is given in

appendix 1,

Another disadvantage of the above twoe equations might be the
fact that one of the two bearing surfaces has been assumed tc be
stationary. In many bearings elther surface might move with respect
to the lubricant film as a body, and for physical visuelization it
is convenient to attach & new frame of reference x, y to the body
of the film. Now, let the velocity of the new co-ordirate system
(x, ¥) ve in the x-direotion. Further, let the meaning of symbol U
no longer be restricted to sliding speed as in the previous frame of

reference but let the meaning of it be extended to the sum of the




38

speeds of the iwo surfaces (ul and u2) with respect to the new co-
ordinate system x, ¥y

T =u,+ 1

1 , OTy in normalized form, Ul+ U2= 1l and U1 = Uy’ Ux= Ux+ Ul.

This generalizing transformation yields:

o 1+mD
) Sy
U dx ‘pln
l+m
&
2
1
-2 n, (U - ) {(uv -1,)% v?}
l4m
2 2772
+ (U= Uz){(UE- u,) Ux} | (92)
5 1+m
_h O (L) °
70 dy ‘pUh
l+m
1 2 2y 2
-z |U {(U - U1)+U}
1+m
Q
> 2y %
+ UK{(UE- U, )+ Ux} (90)
and U1+ U2 =1 (9¢)

The presence of inertia effects other than those inherent in
turbulence may be incorporated most concisely in equations (%9a) and
{(9b) thanks to the facts that the pressure is explicit and that the
co-ordinate system is stationary with respeot te the shape of the
wedge. To acceunt for these insertia effects the following terms must

be added to the righthand side of equations (9s) and (9b)

1 . "oth BUE Uy, aUx
+ (pUho) {3 S5+ U 33t U 551 (10a)
and

T % Iy - 3u U

P
+
=
L
5

st

O
+ (pUhO) {Tj' "a"'g_ + hUE -a—:{ ¥y 3% (10b)

re5pectively.') In terms (iOa) and (10b)} the acceleration terms (%gé'
8tc, ) are correct from & physical viewpoint. However, the kinetie
energy terms (Ux ;;é, etc.) are not entirely correct and may be un-
gderestimated. This is due to the fmet that the products of average
flow velocities UE and UI are inserted in (10a) and {10b). It would
have been more correct to insert products of local flow velogities
and to take averages of these products. Bﬁt profiles of the local
flow velocities are known to be rather blumt. Thus, the difference
between the product of two average velocities and the average of the
product of two local velocities may be expected t0 be small, Indeed,
kinetic energy terms are underestiimated by probably less than 20 per
cent"). Such an error is permissible if the kinetioc energy terms are
a first or higher order effect as far as pressure build-up is con-

cerned.

In view of the fact that solving the generalized equations
(%9a+10a) and (9b+10b) for the pressure distributien might well prove
dgifficult, it seems sensible to take & look in the first place at
bearing deeigns which make such a solution unnecessary. Let us there-
after confine ourselves to bearing deasigns in which these inertis
effects constitute merely a first order effect. It makes sense to do

this since:

(a) In'probably a large number of cases inertia effects other than
turbulence, e.g. kinetic energy terms, may well prove negligible.
Indeed, it can be imagined that the following conditions exist

simultasneously in lubricant films

Uh Bo

large no(Eﬁ_) , which is characteristic of rough
surfaces

which is characteristic of bearings
X‘min ¥'min without grooves, or only with shal-
low grooves, and with parallel, or
only slightly non-parallel, surfaces.

'} Where all inertis effects induced by curvature of the film, e.g.
around a journal, have been ignored.

“) Por pressure flow, i.e. under the sole influence of a preasure
gradient, the uanderestimate amounts to 10 per cent.
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and small % and %, which is oharacteristic of bearings with smsall
ratios of film thickness and ocverall dimensions. It will be obvi-

ous that in such cases inertia effects may be neglected.

(b) It is perhaps possible to adapt the semi-empirical formulae (9a)
and (9%) to the presence of inertia effects other than turbulence

by suitable adaptation of the constants n and .

Through introducing a new dimenmionless parameter
Bl Ny
« =3 = (=) (10c)

a more straightforward way of treating inertia effects is possible;

i.e. by observing that

1. inertis effects are small if the dimensionless parameter (o) is

much smaller than unity

2. in that case inertia effeocts can be regarded to be a first order
effect:

p = Pturb.+ ocspinertia'

All this leads +o0 a simplification of anmlytical work:

a&. when « ~ 0,01, inertia effects other than turbulence can

be neglected

b. when o« ~ 0.1, inertia effeects are a first order effeot, and a
corresponding correction will probably prove to

be fear from appreciable,

No simplification seems possible if the order of magnitude of « iz
unity. At values of « greater than unity, the validity of the formu-
la¢ derived in this chapter becomes doubtful.
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6. EXPERIMENTAL VERIFICATION OF THE BULK-FLOW THEORY

The present semi-smpirical theory of ihe turbulent lubricant
film ocan only be verified on the basls of a large number of experi-
mental results. Especially when direct adaptation of formulae (8a)
and of (8b} to the presence of inertia effects is required, a great
asmount of experimental work must s+lll be done. I+ can be stated
right now that but & rather small amount of this work can be found
in literature. 8ince it will be useful to hendle exﬁerimental resulis
more or less systematioally and to get some ldea of the amount of
experimeﬁtal work yet to be doﬂe; the following claesification system

hes been set up for the turbulent film:

I Types of film flow

1 "Pressure flow" under the influence of a pressure gradient
2 "Drag flow" due to the asliding of a surface

3 A combination of the two mein types of flow in parsllel direc-
tions

4 A combination of the two main types of flow in directions
including &n snglse.

IT Lubricent film profile without roughness and/or patterns of
shallow grooves in the surfaces

10 Plane lubricent film

20 Curved lubricant film, uniform film thickness
20 Plane lubricant film, non~uniform film thickness
40 Curved lubricant film, non-uniform film thickness.

IIT Surface finish

100 Both surfaces smoeth
200 One surface smooth, the other being rough
300 Both surfaces rough.

IV BSmallscale design characteristics of the surfaces

1000 Both surtfaces ungrooved

2000 One surface ungrooved, the other having a large number of
shellow grooves

3000 Both surfaces have a large number of shallow grooves.
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On the basis of this classification system i+ is poasaible te
give a systematical survey of experimental data found in liter- agreement
ture. Almost all date will be seen 1o be characteristic of smooth Ciaessification 1in Re ax theory
BTUTe. o8t 4 ' experiment E 4
ungrooved surfaces (1100). Within this category, sixteen combiw = : !
I
nations of types of flow and film profile can be formed on the 1111 fi03 105 gaod ;
basis of the above claseification system. Nine combinations could 8r i
in 1i 1112 Dr i
be found in literature (see Table 1 on page 43). It will be seen th05 5104 good
that they are the more significant coembinatione out of the six- : :
teen possible combinations. However, enough experimental data for ? 113 Cooj 3.104 good %
strongly noneparallel surfaces ere lecking. One of the cembina- ?3 pa h
tions, i.e. 1134, is partioularly important because practical é fo
N gr
bearings fall in this category. )
. S : 1121 Pro3 107 fair
PThe experimental data, classified along the lines indicated ; 4
above, should provide us with the proofs that the step-by-step gen- i &x :
eralizations of formula (la) ? 1122 DTO3 610
n E fig3 fair
w.h g1
= n(p =) : 0 2.10%
1 u2 | E
2Pl
. 1123 Cc¢ % 3
which has eleborately been outlined in the previous chapter, 1s jus- i pal 2.4-10 good
tified. The generalization is in 4 steps, and follows the classifi- ; i;
cation of types of film flow (see alse Table 1): | 122 ce s .
: 1410 2-10 fair |
1. Pressure flow. BExperiments on this flow type should provide s g £y
vith fitted values for constants n and m_ in formula (2). E : fa :
ith £ i T 1134 Cc? 1.2-10% good |
2. Drag flow. Experiments should provide us with fitted valuga for % bearing test 4
constants ny and y in formula (5). The geéneralization of the ; f1
above formula (la) would appear justified if m R my, and no/hln ; fe
ax= 1, see formula (d4a-b). 3 1143 te 3 3
: PEg S 3.2°10 good
5. Combination of the {wo main types of flow in parallel directions. i 2§
Using the c¢onstants noy Moy 7y and my,s pressure gradient and wall } 1311 P
shear stress must be correctly predicted by formula (fa-e). * : 3
4. Combinations of the two main types of flow in directions ; 2124 Ce i
including an angle. Phis description includes the flow pattern ; 2103 6'103 good '

- : 1 . :
ocourring in practical bearings. Using the constants no, mo, nl, E _ Bn :
and m,, pressure gradient and wall shear stress must be sorrect- 3 } This critical Reynolds number '

: ; + b 1134.
ly predicted by formulae {7a~d) and (8a-b). : is a function of n , see su 54
. E |
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' agreemant
Claseification test of | experimental results ratio Remin ' Remax theory
formula - experiment
Pressurs flow, plane lubricant film and uniform _ b 5 5
1111 f1ilm thicknesse, both surfaces smooth and un- 2 n =0.066 m = =0.25 —a() 10 10 gaood
groovead 0 0 r
1112 Dreg flow, plane lubricant film and uniform film " 3 4
thickness, both surfaces smooth and ungrooved 3,4a-b n1-0.055 m1=-0.25 ;-0 10 %10 good
1113 Combination of the two main types of flow in 6a, - b n0-0.066 m ==0.25 ? 5-105 5'104 good
parellel directions, plane lubricant film and uni«for 2 = 0 N :
form film thickness, both surfrces smooth and un- . m nl-0.055 m1“0'35
grooved .
1121 Pressure flow, curved lubricent film and uniform 2 0.066<n_ < 0.088 h 3 5
film thickness, both surfaces smooth and un- © m =-0.25 r < 0.05 10 10 fair
grooved o "
1122 D . h 3 3
rag flow, curved lubricant film and uniform 5,4a-b n1=0.065 m1¢-0.25 ;=0.016 10 6-10
film thickness, both surfaces smooth and un- n.=0.065 “ he0.028 5_105_ fair
grooved 1 . o z 4
nle.OBB M 4 5.10 210
7 =0.099 '
1123 Combination of the two main typea of flow in bc . n 3 5
parallel directions, curved lubricant film, uni- [for umézﬂ n0=0.066 mlz-0.25 ;u0.0lB 2.4-10 2.4°10 good
form film thicknesa, both surfaces smooith and
ungrooved '
1124 | Combination of the two main types of flow in 8b 1 h 3 4
directione including an angle, curved lubricantg for Ux’? n0-0.052 mou-0.24 _ ;;0.014- 10 2-10 fair
film and uniform film thickness, both sur- 0.115 - ;
faces smooth and ungrooved :
11%4 Combination of the two main types of flow in 8a-b guh 3‘) =-D.D <SP Tas Ak
bearing teat directions including an angle, plane lubricant ( T /e s *25 T -003 210 _ 1.2°10 goed
film and non-uniform film thicknesa, both sur- 1,000
faces smooth and ungrooved .
1143 Combination of the two main types of flow in b n0-0,066 m ==0.25
parallel directions, curved lubricant film and 230.01 5. 4.100 _ 1nd
non-uniform film thickness, both surfaces smooth r -4-10 ot 3.2°10 good
and ungrooved
1311 Pressure flow, plane lubricant film and uniform 1 0.25 «m_ < O
film thickness both surfaces rough and ungrooved o
2124 Combination of the two main types of flow in Ba-b (EUh) - 500‘) _ -
directlone including en angle, curved lubricant L N mel,? h_ 0.00 A3 5 3
film, uniform film thicknees, both surfaces o > T 04 10 10 good
smooth and grooved '
*} This critical Reynolds number
Table 1 is a function of n_y see sub 113%4.
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Moreover, the load-carrying capaocity of a bearing must be correct-
ly predioted by the solution found for the pressure by integrating

formulae (Ba-b) in conjunction with the continuity condition.

In the accompanying Table 1 experiméntal results pertinent to
the generalization of formula (la) are collected. It can be seen that
suffiolient experimental proofs for the bulk-flow theory could be col-
lected for smooth ungrooved surfaces with both plane and curved lu-

bricant films.

The remaining two experiments, one with rough and the other with
grooved surfaces, do not suffice for generally proving the theory.
However, with grooved surfaces, there exiasts agreement beiween theory
and experiment for a complicated combination of the two main flow
types. Then one may be confident that the theory will at least be

also valid for grooved surfaces.

Detaila of the experiments of Pable 1 are dealt with in the rest
of the present chapter.

1111 Pressure flow, plane lubricant film and uniform film thickness,
hoth surfaces smooth and ungrooved.

0f the many experimental resulis obtained with turbulent flow
between two surfaces those of Devies and White (1929) have been se-
lected. From these tests the values of the constants in formula (2)
relating friction-factor and Reynolds number can be derived., For
Reynolds numbers

pu_h

nm semeller than 105

we find:

(M Q

In a book by Schlichting (1965) and a survey arsicle by Harinett,
Koh and Mc Comas (1962),ibwas shown thet the hydraulic dizmeter concept
is valld when comparing experimental resulte with pipes and betwesn
twe surfaces. This concept andiled the author to derive the same two
above values for the experimental constants n and m from experi-
nents on turdbulent flow in the annular space formed by two concentrio
round pipes (Koch and Peind, 1958) and from the bagic experiments on
fiew in round pipes by Blasius (1915). All the expariments cilited here

indicete that the above two wvalues for no and mo are valid up to
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Reynolds numbers of 1O5. At higher Reynolds numbers slightly differ-

ant values will be found.

1112 Drag flow, plane lubricant film, and uniform film thickness,
both surfaces smooth and ungrooved.

Only two tests, one by Couette (1890) and the other, by Robert-
sen (1959), come in this category. The results of these two test
series agree surprisingly well with esch other. The values of the
constants in formula {3) can be derived from these tests. Up to the
highest Reynolds number at which these measurements were made, i.e.

pu_h :
nm & 30,000, we find: n = 0.055 and m = ~-0.25.

True, on the sole basis of the experiments by Hobertson it might be

derived that the value for m, might be smaller: m, = -0.2. However,

1
the author felt that the range of Reynolds numbera covered by Robert-
son 104—5 lO4 wag not sufficiently wide and thet values far ny and

my should rather be so taken as to yield the best correlation for the
entire range covered together by Robertson (1959} and Couette (1890).

It is to be observed that only Roberison used a plane fiim.
Couette used a stationary shaft and a rotating bearing with = small
radlal clearance to radius ratio. But in such cases turbulent Ceuetste

Tlow is physically almost identical t¢o turbulent plasne flow.

Robertson's measuirements of the friction fadtor are indiieot,
being derived from measured flow velocity profiles. Counette's mesmsur-
ements are direct in that he measured the torque exerted on the shaft
11135 Combination of the two main types of flow in paralliel direct-

ions, plane lubricant film and uniform film thickness, both
surfaces smooth and ungrooved.

Only the results derived from Shinkle and Hornung's test series
(1965) are given here, In thelr test geries the flow relative to the
stationary surface was blocked by & barrage attached to the station-
ery surface, heace w = 0. The shear stress = Te™ T at the sliding
gurface (TO due to the pressure flow component and Ty due %o the drag
flow component) was messured, see fig, 2. Their results are given in

& graph and they can very well be represented by the following for~

mula: _
1T "‘0-25
b . _o.062 (B3
1. .2 N
2PY
for 3,000 < Q%E < 30,000 and in which Ty = Tg = Tp°

Por cemparison a formula of the same form will now be derived from
6a and b. From the tests deseribed sub 1111 and 1112, it was found

that:
mo = ml - -0'25 n
"]
n@ = 0.066, n},.: 0‘055’ 80 that a = nl = 1020

Substituting these values in formulae (6a and b) and taking
acoount of the fact that the .mean velocity of flow u relative to

the stationary surface is blocked, (uw = 0) gives:

d(p+p,)
dx =0
-0.2
5 = - 0.066 (T)
Pl ap
1dp X 1
ToT " 2 ax h and 1.211 = -3 3x h
T =-0.25
thus T 2> = -0.033 (2%3)
2PY
i -0.2%
and f 12 = 0.0275 (Q%Q)
2
Hence,
T -0.25
T b2 = -0.060 (2%3)
2PV

in which Tp= T,- Ty esrees surprisingly well with the above formula

derived from Shinkle and Hornung's tesis.

It should be noted that for Q%E > 33,000, in Shinkle and Hor-

nung's test series showed, the influence of measuring srrors, of

roughness of +he surface, or of inertia effeots in the flow other

“&T
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the curvature of the pipe causes an increase of pressure drop not

exceeding 30 ?b. Keeping in mind thet the Reynelds numbers and the

than those inherent in turbulence, become apparent. Conseguently, st

fedi)- = 100,000 the theoretical value is 15 ?b lower than the experi-

L film thicknesa teo radius ratio in bearings certainly not reach the

mental value. However, in the aforementioned regima of Reynolds num- above values, we will in all the cases still to be desoribed, in
bers greater than 3,000 and smaller than 30,000 excellent agreesment g which the curvature of gurfsces alse plays a role, try o demonsirate
has been found. '; that the effeet of the curvature is small.

Strictly epeaking, the experiments here surveyed do not come %' 1122 Drag flow, curved lubricant film and uniform film thickness,
into category lll3 because the lubricant film had & ocurved profile. ? both surfaces smooth and ungrooved.
However, in Shinkle and Hornung's teet series the effect of the cur- g Three test series come into this category. The authors are
vature wes negligible because the mean veloeity of flow in cireum- g Burton (1967), Tayler (1923} and Pan and Vohr (1967). Teats by Burton
ferential direction was zero: u = 0. E {1967) with a bearing medel with the rather lérge ratie of 0.016

petween lubricant film thickness and radius include, among ether
1121 Pressure flow, curved lubricant film and uniform film thiok-

ness, both surfaces smooth and ungrooved.

things, indirect measurements of the shear stress at a surface due to

drag flow. From his tests it can be conocluded that for
pumh

1

the constants of formula (3) had the following valuest

FNo experiments are known that are directly related with the

present case. However, the many measurements published for curved 1,000 < < 6,000

pipes enable us to gain an insight into the effect of curvature of
“

the surfaces on the flow, particularly into the lnertia effects asm~

sociated with the curvature. I+ will be evident thet we need only f n,= 0.065 and my= -0.25.

consider those cases in which the radius r, of the pipe is small with :
1 As regards Burton's tests with the lower values of these Rey-
reapect to the radiuws r of the curveture. In faect, in bearings, the . .
nolds numbers, the constants, substituted in formula (3) gave some-
ratio between the lubricant film thickness and the radius of curva- .
( h what too low values for the shear stress at the surface, i.e. down
ture will invariably be exceedingly small (~ 0,003 < = <~0.0%)., I : .
v 5 v 5 r 3) K 3o -10 ?u. Probably these low values are due to an influence of Tay-
may be expected that the effect of the ocurvature in such cases will . : ,
lor vortioes. Conditions for Taylor vortices $o occur in a transition
be evident from a moderate increase in flo esi i
t W resisyance or, say, in region between laminar and turbulent flow were favourable bscause

the pressure differential reguired for maintaining a given flow. Burton, a8 well as the other authors, wsed a rotating journal and a
. _
According to tests by White (1932) and Ito (1959), the ratio stationary bearing,

betiween pregsure 4ro ith f1 i ipe i i
P T rop wit ow in a curved pipe and in a straight Paylor (1923) used a still greater lubricant film thickness to

one can, for the range covered b hem, be e :
! g vyt ' expressed by: radius ratiec in his tes+ts, viz., % = (0,028, From hig results the same

1
P /4 fi 1/2 values can be derived, viz., n,= 0.065 and m,= -0.25 for
a + a, (=~ (=) 1 1
o 1 i T
pumh
The values found for a end 2y do not completely agree in these e > 5000,
0 te ies. i i ~
two test series. For our purpose 1t is sufficient to know that a, 1 Finelly, tests by Pan and Vohr (1967) should be mentioned, these
and ervD-lo It can then be derived immediately that for ' : showing the highest film thickness to radius ratie (muoh higher than
pu the value which is desirable fer-bearings), vig., % = 0,099, From
m r .
3 L < 107 and;l<o.05
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their tests we can derive: ny= 0.08H and m, = -0.25 fer
pumh
7 > 5000.

It should also be noted that both from Taylaor's and frem Pan
and Vohr's tests 1t follows that up to approximately
p umh |
1

Taylor voritices may have had & considerable influence and that the

= 59000’

shear atreasses which can be predicted on the basis of the above men-
tioned constmants, l.e. for
pumh

H

valuesa. On the other hand, in Burton's tests the influence of vorti-

< 5,000, will be lower than the measured

city was much less proncunced in this same range. Consequently, there
might well have been some mechanism that suppressed vortioity in Bur-
ton's tests and due to which the transition to turbulent flow took

place already at lower Reynolds numbers, someéwhere in the neighbour-

hood of pumh 1,000 A different explanstion might lie in the fact
T ’

that Burton derived shear stresses indirectly, namely from measured
flow velocity profiles and that the influence of vorticity on shear

stresg becomes rather elusive by doing so,

The general conclusion is that the effect of the curvature is

small and manifests itaeelf in an increase of the constant ny by less
than 20 per oent if % < 0.0% and that the increase may even be ne-
glected altogether whenever % £ 0,003, The values for constant m,

remain unchanged. If Tayler vortices are present in the films, an
estimate of the rhear streas on the basis ¢of the above values for
constants r, and n, tends to be conservative. However, the influence
of these vortices on shear stress will be confined to Reynolds num-
bters smaller than 5,000. '
1123 Combination of the two main tyﬁea of flow in parsllel direc-

tions, curved lubricant film, uniform film thickness, both
surfeces emooth and ungrosved. '

In ths literature the authoer vould find only one test (Burten,

1967) in the present category. Burton has measured pressures in s
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flow relative to the statienary surface; the flew was not.entirgly I
bleoked, and um ameunted to abeout 1/4 U. His test was made under
conditions in which inertis effects at the inlet and outlet of the

film played a considerable role.

Notwithstaending these inertia effects, it can he derived from
8 measurement at one Reynolds number that:

n® ap (;l_)3/4

15 () = 0.0z * 10 %.

t
By substituting u o= % U and n, = 0.066, m,= -0.25% ) in formula
(6c) and by rearranging it follows that

.EE 4ap l)3/4_ 0.017.

71U dx ‘pTh

Hence the theoretical resuli when using velues for . and =

valid for plane films is somewhat lower than the experimentel one.
This might well be due to the fact that in Burton's experiment (1967)
& shaft{ was rotating in a bearing with the rather great radisl clear-
ance to radius ratio of 0.0l&., Hence, the influence of the inertia
effects induced by the curvature of the lubricant film agein menil-
fests itself in a moderaste increese in pressure build-up, i.e. by
about 20 percent.
1124 Combination of the two main types of flow in directions includ=-

ing an angle, curved lubricant film and uniform film thickness,
both surfaces smooth and ungrooved.

Attention is given here in particular to the combination of
pressure flow and drag flow in which both flow-components are at
right angles to each other, This flow pattern obtaina, for instance,
when & shaft is made to rotate concenfrically in a oylindrical bear-
ing and when also a flow in axisl direction between the surfaces is
set up by an equally axial pressure gradient. This flow pattern was
realized in tests by Tao and Donovan (1955) and by Yamada (1962).
Only Yamada's tests are treated here because they Eeem to be more
relisble and are interpreted more easily. Yamada represents the re-~

sults of his mespurements as [ollows:

dp n
& o oemm | By
B A

puy

'} see sub 1111,
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with uy in the axial direction y, and U in the olrcumferential direc-
tien x. At neither surface d4id Yamade measure shear stresees in the
oircumferential direction. His temts were focused on messuring sxial

flow rate and axial pressure gradient at various roﬁatianal speeds.

From formula (8b) it is pessible to derive an expression which

lends itself to comparison with Yamadas's experimental resulta.

To this end formula (8%) should first be adﬁpted to the presentg
oendition whers the aversge flow cemponent in circumferential direc-
tion must have been equal to half the sliding velocity: Ux= E%x 0.5.
This accounts for the fact that there iz no pressure flow component
in the circumferentlal direction. After some calculation it then

follows thats

m l4m
8p 5 h 2 o
ay EEI_ { ( ) 2
2=~1’10 T] +l}
pu
¥
. 4-"P'h pu_h
or, by substituting A = ~—Q%-, Re = _ﬁl_
pu ¥
&ndR‘:Q"g‘}l,
w M
l+m
0
L R 2 2

= 4 n, Re {-( )+1}

Sub category 1111, the following values for n, and B, with pressure
flow have been found, n = 0.066 and m = -0.25. Howsver, Yamada (1962
himself has found slightly different valuest n = 0.06% and o = -0.24
for his particular experimental apparatus with pressure flow (Rm-O).
This discrepaney is probably due to & slight influence of inertia
effects other than those inherent in turbulence. In Fig. 3, some of
Yamada's experimental results have been depicted. It can clearly be
geen that$ these results agree roughly with the above equation. For a
few cases depleted in Fig. 3 and 3b a cloger inspection of fhe
sgreement between theory (dotted lines) and experiment {drawn 1ines)
is possible. The dotted, theoretical lines apply to the csasea .char-
acterized by ng 2,000 and 5,000 in Fig. 3a and Rw= 10,000 and

20,000 in Fig. 3b and are based on the above eguation when substi-
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tuting therein Yamada's own values fer na and mo. I+t can be seen thri
the agreement between theory and experiment is excellent for Rm‘>='Re

and Re > Rw’ or U 2 u:,r and gy>b U. But in 8 regime characterized

Pt

by Re= % Rm, or uy = % Uy his experimental results are generally

higher (about 20 per cent) than theoretical resulte. This effect can
probably be attributed to Tayler vortices, buf is so small that there

is no immediate need to account for the occurrence of these vortices.

The above formulae which have been derived for the present, spe-
cial category is identical to Taoc and Donovan's and Yamads's formulae
except for deviating values of some numerical constants. Their theo~
Tetical work relating te this special case can therefere be coneider-
ed ag a first attempt at developing a& theory on the turbulent lubria-
ant film and the more general equations that have already been out-
lined elaborately in the previous chapter.

1134 Combinstion of the two main types of flow in directions ineclud-

ing an angle, plane lubricant film and non-uniform film thick--
ness, both surfseces smocoth and ungrooved.

A number of experiments are known with plein e¢ylindrical fluid
film bearings, Fig. la {Smith, Fuller {1965) and Xetols, Mo Hugh
(1967)), and with tilting-pad bearings, Fig. le¢ (Oroutt, {(1967)).

All these experiments may also be used here to verify the theory.

In these tests the film thickness 4o radius ratio was so small
that the ourvature of the lubricant film and inertia effects due to
the wedge shape of the film may be neglected: %-53 10—5. Acourate
comparison of theory and experiment is not &et possible singe the
squations (8a) and (B8b) have not yet been solved. Indeed, in the
first place it must s+ill be shown that such solutions are useful
and valid. It ie possible, however, to make a rough comparison. In-
dsed, it can be derived from (8a) and (Bb) that a sclution of these
equations should give & result of the following nature:

pmhi pUho l+m0 b
70 T VM ) fle )

where pm = mean pressure over the projected surface b 4

hD = radial clearance

s

By

¢ = dimensionless eccentriolty
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% - width/diamatar ratio.

In the above-discuesed category 1111, the numerical value of'mo was

feund: m_= -0.25%. For lamihar flow in the lnbricant film 14 is well
o

known thatt

2
p h B
m o b
707 - £,(es 30+

In appendix 2, the suthor has determined function fl(a,b/d) in
the former equation for ene simple ocase, namely for ar infinitely
wide, plain joﬁrnal besring (%-*un ). By way of an exsmple, the casse
has been numerically worked out for one small value for the ecocen-
gricity (& = 0.2) and the result has been compared with the numeri-

cel resuli following for the same case, but with laminar flow, Irem

the latter egquation.

As expected, there eppears to exist a oritical Reynolds number:
pUh
(=
at which the two equations yield identiosl numerical results. This

critical number represents the transition from laminar to turbulent

flow as far as the caloulation of lcad-carrying capacity is concerned.

The value for thie critical Heynolds number turns out to be:

.(pUho
N

This is a conservative estimate. With inoreasing eocentricities the

) % 1,000,

value tends to inorease mlbelt only very slowly.

By making use of the present concept of a oritical or transi-
¢tional Reynolds number, an attractive simplification of numerical
vork can be obtained. Indeed, the formula for load-carrying capacity
in the case ef turbulent flow in the lubricant film can profitably

hae rewritten as follows:

1+m -{1+m )
2 . o o
. _h plh pUh b
. m O_ ( 0) ( O) fz(ei E)
1Ur 1 N ‘e . |
in which the functional relstionship fz(z, E) is known lasminer ludbri-
cation theérm in which ma---0.25 for smooth surfaces and in which

pUR,

} = 1,000 for small eccentricities and smooth surfaces, see
G

3
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appendix 2.

It proves indeed that the above formula roughly agrees with the
results of two of the three test sgries. Excellent agreemeni can be
obtained with Orcutt's experiments, see Fig. 4. In that figure (43,
4b, 48 and 4e) experimental results are depicted in 'the manner chosen

by Orcutt. Making use of the above formule and of a critical value

for the Reynolds number (pUhO) leads to a replot of graphs

Ui

giving the relationship between the inverse of dimensionless load-

o = 1,000,

carrying capacity versus dimensionless eccentricity in Fig. 4c¢ and
that between dimengionless fricitionsl torgque versus inverse dimen-
sionless load-carrying capacity in the replotted graphs in Fig. 4f.
It can be seen in Figs. 4¢ and 4f that all experimental results can

be represented by one line and that this line is close to that for the
laminar experimental resulis. Deviations can be seen to oceur only if
eccentricity tends to be rather high. Moreover, they are seen to be
such as to make the present critical value for the Reynolds number on
the coneervative side.

1143 Combination of the two main types of flow in paraliel directions,

curved lubricant film and non-uniform film thickness, both sur-
faces smooth and ungrecoved. '

Pan and Vohr (196?) give experimentallresults pertaining 3o the
above conditionrs. The besring tested was & oylindrical fiuid film

bearing of infinite lengthj the maximum value of pUho waes 3,200 and
h -1

the filmthickness to radius ratio ;2 = 0.0104. It has been demon-
gtrated in the foregoing that in that case we have to do with Taylor

pUho
1
the flow becomes fully turbulent and the effect of the curvature only

vorticity in the lubricant film. Above a given HReynolds number

results in an increase of n_ and n, in formulae (2) and {3) which may

hO pUh
perhaps be neglected for el 0.01 and F
1121 and 1122). The test results make it possible to determine the

pUh
7 S for which the effect of vorticity on pressure

]

» 5,000 (see also sub

Reynolds numher

build-up is negligible. For this purpose, we uge those test resulis
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in whieh the ratie of the peak praaéures in the lubricant film with

. . : _ Pin
turbulent and laminair flow is given for Heynolds numbers_110143,200;

In appendix 2, the author has found the following values for the in-
fini¢ely wide bearing:

for € = 0.2
Pyate puh >/t
max o )

(a} turbulent i 30+ = 0.007. ( 3 )
o 2

(b) laminar 1 m——_’zg’; ©_1.23

80 thats

P pUb_ 3/4

max turbulent

= 0.0057 (Mﬁ—g)

pmax lamipar

Comparison of this expression with the experimental results

pUh
shows that for T £ > 2,400 there ig good agreement and thai the

estimate on the basis of the theory is less than 10 ?o lower than
the test result.

1311 Pressure flow, plane lubricant film, and uniform film thickness,
both surfaces rough and ungrooved.

So far it has been attempted to make the bearing surfaces as

- emooth as possible. If the flow in the lubricant film is laminar this

i8 no doubt sensible. In that case, roughness of the surfaces has a
negligible effect on pressure build-up in and leakage from the lubri-
cant film. Henoce roughness would entail that the surfaces would soon-

er get in centact with each octher.

In the case of turbulent flew in the lubricant fila it is by no
meanawself-evident thet the surfaces ghould be given a emcoth finish.
Indeed, it is conceivable that roughness ef even a small percentage
of the lubricant film thicknesslmay already result in a werthwhilse

increszse in pressure build.-up and/or in a reduation of leakage.

Prom the data compiled by Schlichting (1965) it ocan be conocluded
that the constant m_ in the formulae (2}, {Ba) and (8b) inoreases
with increasing heights of the roughness from a amall negative value

for smooth aurfaces to B = 0 for very rough surfaces,
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It seems pogsible to achieve an increase in lead-carrying capa~
city of gelf-acting bearings by a facter of about 2 and a reduction
of leakage in externally preasﬁrized bearings by a ginilar factor 2.
It seems that until now, no work pertinent to this improvament of ;
bearing-properties has been published. |
2124 Combination of the two mein types of flow in directions, includ-

ing an angls, curved lubricant film, uniform film thickness, beth
surfaces smooth and grooved.

These conditions are realized in tests by Stair (1967) and Pape
(1968) with grooved seals (visco-seals)., The seal consists of a shafg
with a multiple square screw thread in a smocth bushing; shaft and
bushing are accurately concentric, and rotation builds up preasure in
axial Adirection y. In Stair's tests, the shaft rotated in the bushing
pUh
e

the bushing rotated around the shaft and there was & sudden transi-

and vorticity occurred up to ocertain values of . In Pape's tests

tion from laminer flow to turbulent flow.

From the formulas (8a) and {8b) it can be derived that the folw-
lowing formula would have +to be applicable in the turbulent regime:

Ll4m

2 0
h™ dp _ puh .

ﬁﬁ ay " ng( T } « £ {dimensionless groove parameters),

in which %§ givea the overall, smoothed axial pressure gradient, h

gives the radisl oclearance. and where f denotes a funectional rela-

tionship.

Despite the fact that inertia effects must have played a role,

Stair's and Pape's tests agsin give the value m = =0.25. Hence it
. o pUh
appears that this constant never changes as long ag —|/— < 105 and

B

as long as the surfaces are smooth, even though one of them is grooved
e value of the constant no'could not be derived from the ex-

periments because the funciion f of the dimensionless groove para-
meters has not yet been derived. However, from the experiments it

seems posaible to derive a coritical Reynolds number

(E%Q)cz nof (dimensionless groove parameters) = 500.

The derivation is in the same manner as sub 1134, namely through

ex+ravolating laminar and turbulent flow datsa.

61
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7. COMPARISON OF THE RULK-FLOW THEQRY AND TWO OTHER THEQORIES ON THE
BASIS OF THE LAW-0OF-WALL AND THE MIXING LENGTH CONCEPT.

All equationsg, that in the varicus theocries glve pressure and
flow in a turbulent lubricant film, are gemi.empirical and contain
two empirical constants. The main difference between the bulk-flow
theory and the 4wo conventiael fheories, based on the law-of-wall or
the mixing-length concept, lies in the choice of the empirical con-
stants, In the first theory, empirical constants ars derived from
measurements on bulk-flow between stationary eor sliding plates and
in pipes. In thé other two theories empirical constants are derived
from measurements of time-averaged flow veloocity profiles between
gtationary or sliding plates and in pipes. In the first theory it is
possidble to derive the empirical censtants without much insight into
the mechanism of turbulent flow. In essence, the anthor'as theery is
nothing but a generalization of the wéﬂ.knéwn dependence between
friction-factor and Reynolds number that was first given by Blasius
(1913). In the other twe theories, empirical consiants cannot but be
derived after having introduced a model of the turbulence mechanism.
Indeed, the applicétion of the law-of.wall reguires & gquantltative
determination of the universal velocity profile near s wall and the
applicaetion of the mixing-length concept requires the determination
of the mixing length. However, any model accounting for the turbu-
lence mechanism is only valid for certain limiting conditions. Thus,
the validity of such models is a matter of continuing dispute. It ie
cutaide the scope of this work to take part in this dispute., There-
fore, the practical results of the theory based on the law-of-wall
concept, as worked out by Elrod and Ng')(l96T) and that based on the
mixing-length concepi, as worked out by Constantinesocu (1969)"), are
compared with the author's theory and it will not be discussed at
length whether the other investigators have correctly applied realis-
tic, physical models.

In the firet place, the three theories must be brought in such

') an earlier, lnearized, version of this theory was developed by
Ng and Pan {1965). '

") the firet publication by Constantinescu on the subjeot is in
Rumanian and dates from 1958.

a form that they can be compared. Practicael results .o zﬁh

ventional theories have been presented by‘their ofiginatorSﬁiH“thé-
form of graphs of the magnitudes Gx en Gy derived from the following

two equations thai resemble these for plane laminar flow

2 ' .
h_dp 1 11
U= = Oy Wax T2 (11a)
2
- h e (11b)
Uy= = % %0 oy

The first equation gives the dimensionless, mean flow velocity in the
direction of sliding. It is seen to consist of a pressure or Poiseu-
11le flow compenent and a drag or Coustte flow component. The second
equation (11b) gives the dimensionless, mean pressure flow velocity
perpendicular to the direction of sliding. From the graphical results
of the two theories, 1t caen be dgrivad that Gx end Gy reach a maximum
value of 1/12 for Reynolds numbers smaller than 1000 so that the
equations become identical to the equations for laminar flow in that
regime. In the turbulent regime Gx ang Gy are dependent on the Rey-
nolds number based on sliding speed and local pressure gradientg (or
Reynolds number based on the local flow velocity due to the local
pressure gradient). This feature can be expleited by inserting Ux and
U {equatione lla and 11b) into equations 8a and 8b. By doing so the
bilk flow theory is brought in the same form as the two conventional

thecries; Indeed, 1t results in two equations with Gx and Gy a8 un-

3
p ph” dp
knowns, and Heynolds number gh and pressure gradiente 72 3% and

3 B
Ba” QE as the independent variables., The two egquations would appear

ne ay
rather difficult to handle, and therefore are presented here only

. d
for two extreme cases, The first cese ie characterized by 5&:ﬁ> g?

where x is in the direction of sliding, This condition results in

the following two eguationas

Bt Bop0™

+ (- 6 %% + % H)2+m% {12a)
L=5mn, G.v[(“G‘x %ﬁ' -3 R)lmo

+ t- G, g—% +%— R)lm"] {12b)
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3 _ 3
in which gg _pn’ 3 JB_pn” 3p en R = 220

X~ ox' 8 T ¥y 7
The second extreme case is bharacterized by the condition,

dp i QR, which yields:

dy gx
1l+m
1 -no fe2 (2B 12} 2 (138)
oy { y ‘0Y 4 3a
_ _ l+m
2 ,8p2 1 _2l 2
L =n0 {Gy () 7+ 3 R J
4m, 5 3pa 1 oy—e®
+ 2 26l (§P% ¢ R 2 (13b)

Another extreme case can be distilled from fhe two sets of equations
(12) and (13) by stating that both

(3 22 __ 1
Gx 3X anag Gy 3 <3 R

which means that the pressure flow is much smaller than the dreg flow.
Then it follows:

l4m -(1+m_}
D o &)
Gye= n022+m°i R (14=)
1
5 o -(l+m )
G, = R © (14b)
¥ n,

in which non 0.066 and m = -0.25 for smooth surfaces and R 1:105,
see sub 111l. It is stressed once more that the above twa eguations

are valid only with a dominant drag flow.

By means of the three sets of equations {12) (13) and (14) the bulk-
flow theory for turbulent lubricant filme has been cast inie & form
which enables it to be compared with theories based on law-of-wall
and mixing-length concept. It is streésed that it ﬁroved possible
to bring it in c¢losed form and thaf results of the cther two theo-
rigs-do not exist in closed form but have been compiled in graphical
form and,when using a computer, in arrays. The main reason is that

equations for bulk-flow and pressure build-up can directly be derived

from esxperiments in the bulk-flew theofy_3&& %&§£“§ﬁF{ﬁ;athaorzas
based on lew-of-wall and mixing-length concept they osn be.ﬁefiééé”Tf'”
only indirectly, i.e. by numerical integration of flow veloclty pro-
filen.

Equatione based on the bulk-flow theory will now be brought in
graphical form and the resulis depicied in graphe that are derived
from the theoretical work by Constantinescu (1969), Ng and Pan (1965),
and Elrod and Bg (1967).

In the first place some attentien will be given to the case that
preasure flow is much smaller than drag flow {(equations -(14a) and
(14%)). Graphiocal results are presenied in Figs. %a and 5b.' Red
lines are results from the bulk flqw theery. Drawn black lines are
resulis from the law-of-wall (Ng and Pan) and dotted black lines are
based on thé mixing-length concept (Constantinescu). It can be seen
that the dependencoy hetween Gx and R = E%E is rougly identical for
the three theories in a regime characterized by 104 < R <:105. How-
ever, theoretical results from the mixing-length theory can be brought
intc accordance with the other two theories only by sultably modify-
ing the mixing-length constant x*. Thus, from the comparison in a

4

regime characterized by 10 < R <‘105 ag far as Gx is c¢oncerned, it
follows that Constantinescu's mixing-length theory is less reliable
than the other two theories. This feature is even more apparent frem
the comparison of values for Gy in the same regime. Values derived
from the bulk flow theory and Ng and Pan'e law-of-wall theory are
ressonably close. However, values derived from the nixing-length
theory show & rather grest deviation and oannot be regarded to give
an acourate prediction of the actual vglues in lubricant films. Thus,
predicted values for G are less accuréte than thoge for Gx in Con-
stantinesou's mixing-length theory. This is probably not due $o in-
adequacies of the mixing-length concept as a physical model, but to
ignoring the vectorisl ocharacter that here has teo be assigned to
Prandtlts mixing-length conceptﬁ). By correctly epplying the mixing-

') Qerived from Constantinescu's Fig. 6.14, and Ng and Pan's Fig. 18.

") Pages 45, 74 and 282 in Constaentinesou's book of 1969 give ex-
pressions for the turbulent stress based on the mixing-length
concept. The last expresaion 6.12 reflects its vectorial charac-
ter but has not béen used. This can be shown to weigh most heavi-
ly as regards the values for Gy.

et
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length concept and duly accounting for its veetoriml character, val-
ues for Gy could be-made to come equally close to values for Gy de-
rived from the other two theories as iz the case for Gx' One major
drawbeck of the mixing-length approach remains unshattered in that
values for both Gx and Gy can be brought into accordance with the
other two theories only by modifying or adapting the empirical cen-
stan{ kx, gee Fig. 5. Thus, the mixing-length approach stands out as

the least reliable of the three methods in discussion.

The above discussion makes 1t plausible that the mixing-length
- approach may just ss well be left out of the comparisen. Then, only
the discrepancies between the law-of-wall theory and fhe bulk flow
PUh

L
eéxpleined. Thia explanation will be part of the followlng, more gen-

j+]

theery in & regime characterized by < 104 g$ill remain to be

eral comparison between bulk flow theory and law-of-wall theory.

An extra reasen for leaving the mixing-length theery cut of the
following comparison is the fact that this theory has not been worked
out for the general cases in which drag flow may well be as great as
or smaller than pressure flow, Such general casez occur in hybrid and
externally pressurized bearings where drag flow need not be dominant

ag in the previous crses.

A search for a generel treatment of the turbulent lubricant film
axclusively produced Elred and Ng, i.8. in the form of their work
based on the law-of-wall concepi. In their paper, they show that'Ng
and Pan's linearized theory is in acocordance with thelr general theo-
ry. The comparisen betwesn bulk flow theory and their lawe-of-wall
theory takes place by inserting numerical velues for Gx and Gy de-
rived from equations (12a) (12b) (13a) and (13b) in graphs firat pub-
lished by Blrod and Ng, see Figs 6 and 7' . In thess figures, values
for Gx and Gy derived from egs. (lla) and (21b)} are plotted for -sev-
eral values of the dimensionless pressure gradient and with Reynolds
number based on sliding spee& as the independent variable. In these
figures, red linee are results from the bulk flow theory and blsaok
lines are results from the law-of~-wall theory. Drawn lineé represent

cases In which preséure gradient and direction of sliding are roughly

1) fhese graphs are based on numerical work presented in appendix 3.
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perpendicularn, so that gﬁbng.Dotted lines represent cases in which

prsséura gradient snd sliding speed are almést parallel .or g& B gﬂ.
- ¥

It can be deduced from the two figures that it is unim?ortant how

the pressure gradient and sliding speed are directed with respect ta
each other for H—woe and R— 0, the former cases being representativs
of & dominent flow due to & sliding surface, and the latter of a dome
inant flow under the influence of a pressure gradient. In such cases,
the drawn and the detted lines can be sesn to coincidse, The drawn and
the detted linesa deviate in & regime where the two flow components
have the same order of maegnitude., From a comparison between the red
lines representing bulk flow theory and fhe black lines representing
iaw~of-wall theory, it follows that the twb theories show the general

behaviour outlined above and, also, that they are in accordance.

A comparison between- the red and the corresponding black lines alseo
shows that discrepancies are present for the smaller Reynolds numbers
(R < 104) and for the smaller dimensionless pressure gradients. In-
deed, the accordance is excellent in Fig. 6 and not so good in Fig.7.
Such increasing disorepancies. for deoreasing Reynelds numbers can
also be seen in Fig. 5, which is representative of a dominant drag
flow.

It remains to be explained why the itwo theories agree well only over
part of the turbulent regime covered, and which is the better one in
the rsmaining part of this regime. The explanation can be found in
Elrod's and Ng's own work, see Fig. 8. In this figure black dotted
lines are based on their law-of-wall theory and black and red drawn
lines are the result of experiments used by them and the auther, re-

spectively. The vertical co-ordinate gives the friction factor
215 or _§% and
PR

the horizontal gives the Reynolds. number
2Pt pyp

g or o
Elrod and Ng chose this wdy of plotting thecoretical and experimental re-

sults in order to be able to compare in one single graph drag flow,
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due to sliding of a surface, with pressure flow, under the influence
of a pressure gradient. When discussing this figure Elrod and Ng
state that the law-of-wall theory ie asymptotically correct in the
limits of high and low Raeynelds numbers and that it.is not to bhe ex-
peoted offhand, that any agreement can be achiev@d iﬁ the trﬁnsition

ﬂ}'}': 104 .

region which extende up te 1

Indeed, it fellows from Fig. 8 that a theory based on law~of-wall
does not agree so well with experiments as the bulk-flow theory,
which is based directly on experiments. But the lack of agreement is
restricted to the smaller Reynolds numbers, the situation being much
better at sufficiently high such numbers.

The general conclusion is that the bulk-flow theory emerges as

the most reliable one of the three theories that have been compared

in this sectilo.
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¢, DESIGN DIRECTIVES POR TURBULERT
SELF-ACTING FLUID FILM BEARINGS

The bulk-flow theory outlined in this thesis as well as the
other two theories have not been éompletely worked out numericélly.
The numerically most complete piece of information is that by Orcutt
(1967) on the tilting pad bearing. His design data on the tiltipg pad
bearing are based on the law-of-wall theory and are amply suffiﬁient
for designing. For other bearings, however, such degign data are not
yet available, at least none that are based on sound theory for tur-

bulent fluid films.

The bulk-flow theory has so¢ far been worked cut numerically but
to & limited extent, i.e. only as regards the load-carrying capacity
of an infinitely wide, plain Journal bearing.')
will be shown to be applicable, at least in principle, to the design

of all other tjpas of turbulent, self-acting fluid film bearings.

However, the theory

In chapter 6 sub 1134, the concept of the oritical Reynolds num-
ber has been introduced. The value for this Reynoclds number indicates
the trensition frem laminar +to turbulent flow in so far as it affects
pressure build-up in the lubricent and the load-carrying cepacity.
This oritical number is a poor indication of the actual transition
from laminar to turbulent flow in the film, this transition being not
sharp but covering a rather wide regime of Reynelde numbers., That is,
through extrépolating computed locad-carrying capucities of a bearing
opereating in the laminar regime and in the turdulent regime, & criti-
cal Reynolds number could be determined yielding equal “laminar" and
mturbulent® load-carrying capacities. In appendix 2 and in chapter 6
sub 1134, it has been shown that the value for such a critical Hey-
nelds number for plain Journal bearings of great width amounts to

pUh

about 1,000 ({ 5 0)c ~ 1,000). BExcellent agreement ocould be shown to

exist between this prediction and the value whioh could be dsrived

from Orcuttts experiments on & tilting-pad bearing up to eccentrici-

ties & < 0.5. As expected, the value of this number appears to be in-

1) Appendix 2.
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sensitive to the type of bearing and to the eccentricity at which

it operates. The same value for the critical Reynolds number can be
derived by equating laminar and turbulent values for ¢ in ggquations
(1la) and (14a). .

However, it can be shown that a8t very great eccentricities and
with the smaller width-diameter ratios the critical Heynolds number
tends o be greater than 1,000 albeit only moderately so. From expe~
rimente by Pape (1968) it follows that for grooved bearings the cri-
tical Reynolds number based on radial clearance is smaller then 1,000.
This is due to the fact that turbulence can be crested in the grooves

while flow on ridges im still laminar.

After having estimated the critical Reynolds number, the design

of self-acting bearings may proceed along the following lines:

l. Calculate the bearing as if the flow is laminar:
h2

m o

#Or

= f {eccentricity and design parameters)

where f is a functional relationship that may be found in text-

beoks on laminar film bearings.

2. Estimate the Reynolds number
pUho
7
If the Reynolds number is smaller than the critical one (1,000),

the calculation sub 1 is complete.

5. If the Reynolds number is greeter than the critical one, caloulate
the bearing as 1f the flow is turbulent. Do this with help of the
following formula, which was derived in chapter 6 sub 1134, viz.:

2 1 -
tho PUho +m0 pUhO (l+m0)
T - ( - ) ( 7 )or f (eccentriocity and design parameters)

pUh .
Note that ( o )G & 1,000 in the majority of practical cases and
m,= ~0.25 for smooth surfacss.

4. Verify whether inertia effects other than those inherent in tur-
bulence are negligible. Do this by means of the dimensionless
parameter «, ag defined by expression (10c¢), checking whether

indeeds o« « 0.5,
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je

o/}
ol 1 0
where o« = d E; (DUho)

in which n = 0.066 and m = -0.25.

5. Diminish clearances if load-carrying capacity is to0o low or iner-

tia effects are excessive.

No such simple design directives have sc far been derived for
externally pressurized bearings and hybrid bearings. For such cases
the full {(differential) equations based on bulk-flow theory or law-
of-wall theory have to be solved for the pressure build-up. However,
for these cases design information is not completely lacking. Indeed,
experimental results from Roberte and Bett‘s_(l969), Yameda's (1962),
Decker's (1Y65) work are available., Further results of theoretical
and experimental work by the author on externally pressurized and hy-

brid bearings will be published in due course.

TT
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11. LIST OF SYMBOLS

oonstant, index indicating stationary surface
bearing width, index indicating sliding surface
diamater |

eccentricity

functienal relationship

constants defined in equations (1la) and (11b)
film thickness

radial clearanca

constants, see formulae (1}, (2) and (3)
constants, see formulae (1), (2) and (3)
pressure

fictitious pressure

mean pressure per unit projected bearing area
repregentative pressure

volumetric flow rate per unit of width

Reynolds number based on characteristic veloocity
ripe radius |

radius of curvature, radius of cylindrical bearing,
index indicating rapreaentatlve pressure

sliding velooity
mean velocity of flow relative to stationary surface
mean velocity in x directieon

mean velooity in y direction
dimensionless mean velooity of flow in x direction

dimensionlesa mean velocity of flow in y direction
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X, ¥. co-ordinates in sliding direction and
sliding direction in the plane of and
tionary surfaoce

Z co-ordinate perpendicular to x and ¥y
X, ¥ co-ordinates in sliding direction and

the sliding direciion - in the plane of
body of the lubricant film (wedge)

T gshear stress at a surface
T dittc due to0 flow under the influence
0 dient

ditto due to the sliding of a surface

]

1

p denaity
T viascosity _

£ = % dimensionless eccentricity

32  ph’ Bp
o8 _ ph dimensionless pressure
0x 72 gx

3

ar = ph’ 8p dimensionless pressure
dJY 72 3

B

2 2
sran P = () + () ]

=
il
B
o

at right angles to
atteched to the sta-

at right angles to
end atitached to the

of & pressure gra-

gradient

gradient

reaultant dimensionless pressure gradient

Reynolds number based on sliding speed

a3

APPENDIX 1

This appendix is devoted to formulating equations {8a) and {8v)
differently. It is characteristio of the formulation in these equa-
tione that pressure gradients are explicit and that flow velocities
are implicit in the equations. When applying the continuity condi-
tion it is useful to have at one!'s disposal equations in which pressg-
ure gradients are impliocit and flow veloocities are explioit. Such
¢quations can be derived from equations {7a) - (74). However, it is

impossible to eliminate the fictitious pressure gradient. The result-
ing equations are:

l+n
1 h2 a(p+pl) -ﬁ )2+m0
" 2+m 70 Ox i)
U = -n C 1 p
x © 1+mD
2i2+m05
2 2
p2 a(p+pl)] L 6(p+pl)}
gl ax 71U Oy
l+m
o
2+m
o
_ 1 h2 a(p"Pl)( n
- 2+mo TIU ax \pUh
@ l+mO
5 232+m0i
2
{HE G(P-P1J}+{EE a(P-pl)}
o 9x By
+ 1
1+m
0
1 ( 2+mo
- 2 O(p+
_ - 2+m n AP ?1) 1
U = -n © nu_ dy pUh
J © l+m

2 222+m05

. 2 |
{Ei a(p+py ) ° 2 B(ptpy)
ﬂU dx +{ﬁﬁ ay }
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o 14m
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Thus, two equations emerge for each of the dimensionless flow veloc-
ities Ux and Uy. The elimination of the fictitious pressure gradients,
which seems to be rather complicated,would lead to one eguation for

U and one for U . These twa equations can be inserted into the equa-

tion ef continuity.
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APPENDIX 2

In this appendix & solution of equation (8a) is presented for
a film profile represented by h = h0(1+soos¢), which is typical of
Journal bearings. This solution ig worked out for € = 0.2 and p=0 at

0 . .
Proin™ 0, whilet p=0 alasc at Prax™ 1807, Subatitutions are, x = 9r;

h
Uy= 0; Q= U_ ho = constant; n = 0.066; m = -0.25.

First a table is organized as followa:

© S

2
ph 0.75
iﬁ% (E%E_ from 0° ungil 180° step 1°
0-45° 45°-90° 90°-135° 135°.180°
L2 0.75 2 0.75 2 0.75
pms1nﬁho( 1 ) pmcothO{ b ) paho ™ )
1Ur pUho 70r pUho g HEY pUho
2 .
pmho ki )0 75
NUr pUho tan B

Then, for the prescribved value of ¢ {and Qx)’ the values for all the
other expressions and quantities are evalnated, and the table is
filled out. The maximum value of

2 0.75

2o ( 0.07
Wit " pln_ ¥

is underlined, see next table.

No results of a solutlon of an equation for laminar fiow are given

2
. . ph
here. Suffice it here o give the maximum value of nui ’
b 12
max o

and also the value of the dimensionless group for the load~carrying
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p_n°

capacity =

' 1Ur
lar case.

2 2

B tix Pu’o and pth’ L
Yy SQUETINE Jur Uz " plk

0.75
)

< o 0.97 corresponding with the above-specified particu-

a2 critical Reynolds number can be found for which laminar and turbu-

lent films yield eqgual load-carrying capacity, viz.,

Phe value of this critsical

(

pUho) -
T e

sub 1l13%4 and in chapter 8,

1,000,

Reynolds number has been used in chapter 6
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APPENDIX 3

Bquations (12a), (12b), (13a) (13b) give expressions for G

end G for two extreme case¢s. Numerical values for Gx and Gy
given in the following tables. These values have been used in Figs.

5, 6 and 7.
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STRLLINGEN

De in dit proefschrift afgeleide vergelijkingen voor drukopbouw
en stroming in een smeerfilm =mijn niet mlleen geldig voor turbu-

lente stroming maar ook veor laminaire.

(Zie dit proefschrift, vergelijkingen (8a) en (8b), wvul in

n,= 0.D6E en m = =0.25 voor turbulents® stroming en n = 12 en

m_= -1 voor laminaire gtroming. )

De ongevoeligheid van de vergelijkingen voor het stromingstype
doet verwachten dat ze ook in het overgangogebied tussen lami-

naire en turbulente stroming geldig wullen =zijn.

Vanzelfsprekend moaten empirische constanten die kenmerkend wvoor

dit overgangsgebled zijn in de vergelijkingen ingevuld worden.

In een furbulente smeerfilm met een overheersende sleurstroom-
component, ig de druksiroomeomponent onderworpen aan cen rich-
tingsafhankelijke stromipgsweerstand die maximaml is wenneer de
richtingen van de stromingscomponenten samenvallen en die mini-

maal ig wanneer de richtingen loodrecht op elkaar staan.

Deze siromingscondities treden op in zelfwerkende lagers en be-

vorderen de zijlaek.
(Zie dit proefschrift, fig., 5a en b.)

Het toepmssen van ruwe loopvlakken is een effectieve manier om
de inviesd van stroomversnellingen en -veriragingen in een tur-

bulente smeerfilm relatief klein te houden.
(Zie dit proelschrift, formule l0c.)

De in dit proefechrift ontwikkelde theorde insplreert tot een
eenvoudiger weergave van eéxperimentele resultaten dan de theeoris

op basls van de wandwet.
(2ie dit proefschrift, fig. 4.)

De proeven ven Favre aen een vleugel met een huld, die over de
cintrek vean het vleugelprofiel glijdt, sijn ven grooet belang voor
de ontwikkeling wvan vliegtuigen die ateil kunnen stijgen en lan-

den,

(Pavre A., Contribution & 1'étude experimentale des mouvements
hydrodynaemiques & deux dimensions, Publ. scientifiques et tech-
niques du Ministdre de 1tair, no 137 {(1938) ).

De door Favre ondervonden technische moeilijkheden bi] het glij«
den van de huld om de vleugel zijn te wijten aant

- de relatief grote dlkte ven de huid -

- de aandrijving en geleiding met rellen van grote lengte -

~ de droge wrijving tussen huld en buitenomtrek van de eigen-

lijke vleugel -.




