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The purpose of this study on the turbulent lubricant film 1s:

1 To give a brief outline of a new theory called bulk-flow theory;

2 To investigate to what extent results of theories based on law of wall and mixing
length concept agree with the newly developed theory;

3 To provide a theoretical basis for the design of bearings lubricated by fluids of low

kinematic viscosity.

Introduction

THE main characteristic of the bulk-flow theory for
the turbulent lubricant film is the fact that it does not explicitly
make use of any information, nor of any model, on

1 fluctuations of local velocities of flow due to turbulence;
2 the shape of flow velocity profiles from which fluctuating
components have been eliminated through averaging.
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The theory is entirely based on bulk-flow. This is in contrast
with previously developed theories by Constantinescu [5]' who
uses the mixing length model, Ng and Pan [10] and Elrod and
Ng [8] who use the law of wall and an eddy-viscosity concept
and Burton [4] and Black [1] who use information on the shape
of the time-averaged flow velocity profile in the lubricant film.

In this theory only the bulk-flow relative to a surface or wall
and the corresponding shear stress at that surface or wall under
a given set of conditions of turbulent flow are considered and
correlated, see Hirs [9].

This approach is essentially a logical extension to basic work
done by Blasius [2] on turbulent “pressure flow,” i.e., under the
influence of a pressure gradient in a pipe, by Davies and White
[7] on a similar flow between two stationary parallel surfaces,
by Couette [6] on turbulent “drag flow"” between two concentric

1 Numbers in brackets designate References at end of paper,
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cylindrical surfaces due to the sliding of one surface, and by
investigators who later have added experimental results of re-
lated types of flows to the previous pioneer work. Briefly sum-
marized, the present theory is primarily based on the empirical
finding that the relationship between wall-shear stress and mean
velocity of flow relative to the wall at which the shear stress is
exerted can be expressed by a common, simple formula for
pressure flow, for drag flow, and for combinations of these two
basic types of flow:

()
1(,‘2"9“”2 7

7 = wall-shear stress

= density of fluid

= dynamic viscosity of fluid

u,, = mean velocity of flow relative to wall or surface at
which shear stress 7 is exerted
h = film thickness

n and m = empirical numerical constants to be fitted to the

available experimental results

(1a)

where

="
|

I

h
B - Reynolds number
n
T —
= friction factor
lfzpumﬂ

Values for n and m fitted to individual experiments can be
shown to depend, albeit rather weakly, on:

1 the roughness of the surfaces;

2  the curvature of the surfaces;

3 the question of whether we have to do with Reynolds num-
bers greater than 100,000;

4 the influence of inertia effects other than those inherent
in turbulence in the flow;

5 the type of flow:

(a) ‘“pressure flow” under the influence of a pressure
gradient

(b) ‘“drag flow” due to the sliding of a surface

(¢) the nature of the combination, if any, of both types
of flow;

6 the rates of change with time and from place to place of all
quantities indicated in formula (1a); these quantities may vary
moderately in a lubricant film without violating the applicability
of formula (1a).

Tt is stressed that mean flow velocity u,, in formula (la) is
taken relative to the surface at which shear stress 7 is exerted,
while bearings have two surfaces at which shear stresses are
exerted. Therefore, more specialized formulas than (la) are
presented for either of the two surfaces. It is assumed that the
frame of reference is attached to a surface that is considered
stationary. Mean flow velocity w, in the film and sliding
speed U of the sliding surface are taken with respect to the frame

of reference in the same direction. Thus the treatment is re-
stricted to unidirectional flow. So, two formulas can now be
derived:

one for the stationary surface

Ta S M & i
aput,,? n( n ) (1)
and another for the sliding surface
T Iy ,o_(u,,, — Uh\™ ”
Vaplm — UP ”’( " ) S

in which the wall shear stresses are characterized by subscripts
a and b, respectively.

Formulas (la), (1b), and (le) serve for developing a bulk-
flow theory. Formula (la) appears fo be valid for both pressure
flow and drag flow within limits, compare Couette [6] and Davies
and White [7] (see also Burton [3]). Formulas (1b) and (1c¢)
clarify the feature that, in a lubricant film, there are shear
stresses at either surface (r, and 7,) and mean flow velocities
with respect to either surface (u,, and u,, — U).

A Comparison Between Pressure Flow and Drag Flow

Tor our brief outline of the bulk-flow theory it is useful to
realize that similarity of the two types of flow (flow under the
influence of a pressure gradient and flow due to the sliding of a
surface) is not only evident from the fact that the two relation-
ships for T have a similar form but also from the fact that the two
values for n as well as the two values for m differ but little. This
similarity can be further clarified by considering the two exireme
cases represented by formulas (1b) and (1c) as far as the type of
flow is concerned.

(a) solely flow under the influence of a pressure gradient,
pressure flow (Fig. 1)

T (PR :
T = Ny ( = ) (2)

which can be derived from (1b) and (1¢) by inserting U = 0 and
which gives equal shear stresses on the two surfaces: 7, =Ty =
To

(b) solely flow due to the sliding of a surface,
drag flow (Fig. 2)

T mh iy
e ("—“ ) 3)
/2Pl n
which is also based on (1b) and (1¢) and in which u,, = 1/4,U foe
the stationary surface and u,, = —!/:U for the sliding surfaer

and which should be taken to yield equal but opposite shear
stresses on the two surfaces: 7, = —Ty = Ti

2 For physical reasons, the mth power must be treated as if it were
an odd number in order to make the funetional relationship uneven.

——Nomenclature
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Fig. 1 Pressure flow between two surfaces under the influence of a
pressure gradient
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Fig. 2 Drag flow between two surfaces due to the sliding of one of them

The two extreme cases represented by formulas (2) and (3)
show the above-mentioned characteristic, which is derived from
experiments mentioned above, viz., the value of ny/n; as well as
that of mg/m; is close to unity. This similarity of formulas (2)
and (3) exists despite the differences in shear stress distribution
between:

1 pressure flow, see Fig. 1, with an inversely symmetrical
shear stress distribution varying linearly with height z;

2 drag flow due to the sliding of a surface, see Fig. 2, with a
constant shear stress distribution, independent of height z;

The absence of a predominant influence of the shear stress
profile across the film on the values of constants n and m in the
formulas (2) and (3) leads to the following conelusions:

1 The relationship between the shear stress at a surface and
the mean velocity of flow relative to that surface depends but
little on the type of flow, i.e., being valid to a reasonable approxi-
mation for pressure flow, drag flow as well as with a combination
of both, see Fig. 3.

2 TItis tempting to entirely neglect this sensitivity of the shear
stress at a surface to the type of flow. Such a neglect entails
that one might ascribe an addifive nature fo the shear stresses
at the two surfaces given in formulas (1b) and (le), i.e., in that
the total shear stress at a surface may be found by summing the
two component shear stresses as shown in Fig. 3: 7, = 7o +
71 for the stationary surface and 7, = 7o — 7, for the sliding one.

However, in a more refined treatment it should be taken into
account that, for one and the same average flow velocity, density,
viscosity, and film thickness in either extreme case represented
by formulas (2) or (3), wall-shear stress for one type of flow is
not exactly equivalent with wall-shear stress for the other type
of flow. In fact, the two shear stresses, although not differing
too much, show a ratio different from unity. This ratio may be
assessed by dividing formula (2) by formula (3) and assuming
Um, = Um, s well as identical p, 9, k for the two cases, and re-
placing ., and u,, by their common value w,, viz.,

T n Uk YT ™
Sl P (P_) (4a)
2 n n

where suffix 0 stands again for pressure flow and suffix 1 for drag
flow. Experimental results show mo and m; to be equal within
the measuring error and show ny to be maximum twenty percent
greater than n,, so that
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Fig. 3 Turbulent flow between two surfaces under the influence of a
pressure gradient and due to the sliding of a surface

o g 18 (4b)
T1
in which @ will be used as a weighting factor with a magnitude
close to unity.

Now, in expressions for 7, and 7, (see formulas (1) and (1¢))
one of the components can be weighted, say 7,. Thus, 7, =
7o + a7y and 7, = 70 — ar. The =ignificance of introducing
weighting factor @ is the fact that shear stresses 7, and 7, can
be said to be due to just one type of flow. Equations for 7, and
7, need not now be any more subject to the nature of the combina-
tion of the two types of flow.

Equations for Unidirectional Flow

Since in lubricant films the pressure build-up is of major im-
portance, the description of two types of flow will henceforth be
simplified to the description of only one type of flow, namely the
flow under the influence of a representative “total’’ pressure

gradient,
ap.\,
dx

in which the influence of the drag flow component on the shear
stress is included. That is, in order to account for the oceurrence
of the drag flow component, a fictitious pressure gradient

®)

will be introduced and it will be added to the actual pressure

gradient
4p
dx

s0 as to obtain the representative gradient. Weighting factor a
in formula (4b) will be used when converting the shear stresses
71, which are due to the drag flow component to the shear stresses
(ary) that are ascribed to a fictitious pressure flow component,
characterized by a fictitious pressure gradient

dz
For the pressure flow in the steady state to which we will here
confine ourselves, it follows from the equilibrium between the
shear stress 7o acting on elements dx on the two surfaces and the
actual pressures p and p + dp acting on film thickness h that
2r¢dx = ph — (p + dp)h. Thus,

d .
To=—1/s-Lh (5a)
dx
In analogy, the following relationship is introduced for defining
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d A
the fictitious pressure gradient (5:) which is henceforth taken

representative of drag flow

dp dp 71
= —1/,——h, sothat — = —2a — 5b
arm ho 8o i n (5b)
At the stationary surface we then have
h d
7o+ an = — E@('P‘F?l),
y . dip+
which does contain the representative pressure gradient de—'p')

d . ! !
- —gf generating flow with average flow velocity u,, relative to
the stationary surface.

It follows from formulas (1) and (2) for the stationary surface
that

d
—h — (p + p1)
dz h\™
da g (% ) ()
Piim®
At the sliding surface we may put:
-2
To=—GT1 "™~ 9 T P Pl
dip — d
This gives the representative pressure gradient (p—lx 28 —i@
fl

generating flow with average flow velocity (u,, — U) relative to
the sliding surface (in which U sliding speed).
Tt follows for the sliding surface from formulas (1) and (2)

d
-k ;i’x (o~ pl) (Pfﬂm . U}h)m"
(BT (6b)
pluy, — UP Ul

The fictitious pressure gradient can be eliminated from these
two formulas (6a) and (6b). The result is a formula in which
only the actual pressure gradient is left, and thus can be deter-
mined for any combination of pressure flow and drag flow, pro-
vided that average velocity u,, and sliding speed U have parallel
directions:

d wl { pugh\™
ap _ o, [2n® (2l
dz h n

= 2 — h\ ™
+p(_um U) (p(um U}) :| 6¢)
h 1

If the inertia effects other than those inherent in the turbulence
character of the flow are negligible, it is now possible to forthwith
determine the pressure build-up and load-carrying capacity of
bearings having no side leakage (which would result in cross
flow) i.e. bearings having infinite width. It is remarkable that,
by eliminating the fietitious pressure gradient, the magnitude of
weighting factor a in formula (4b) does not affect in any way the
magnitude of the actual pressure gradient in (6¢).

One may also eliminate the actual pressure gradient from (6a)
and (6b):

d 2 m,
M e il [pu"‘ (Puﬂ) !
dx h 7

e (E(}—L"‘ = @)%] (6d)
)

Thereby obtaining the following expression for the fietitious
pressure gradient
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In formula (5b) the importance of weighting factor @ becomes
evident and shear stress due to drag flow can be derived:

=Y [fmms (& }i)m =ipfty == ) (M (’_T)_"‘)m]
K n
(6e)

Thus empirieal constant n, appears to be tied up with ex-
pressions for shear stress due to sliding in the same way as previ-
ously shown in a less general formula (3). For that matter,
empirical constant 7, appears to be tied up with actual pressure
gradients and shear stresses due to actual pressure gradients,
see formula (6¢) and the less general formula (2).

Equations for Flow in Mutually Perpendicular Directions

The previous method, and the use in it of a fictitious pressure
gradient, in particular, will be seen to be useful in an extension
of the theory to flow in a lubricant film in mutually perpendicular
directions. The extension of the theory proves possible by mak-
ing the following assumptions:

1 that a fictitious pressure component may be conceived in
the lubricant film so as to account for the drag flow component;

9 that for the stalionary surface a relation can be given be-
tween, on the one hand, the gradient of the representative pres-
sure consisting of the actual pressure plus the additional fictitious
pressure, and, on the other hand, the mean velocity of flow rela-
tive to the stationary surface, the density, the viscosity, and the
film thickness, in accordance with equation (6a);

3 that for the sliding surface a relation can be given between,
on the one hand, the gradient of the representative pressure con-
sisting of actual pressure minus the fictitious pressure and on
the other hand, the mean velocity of flow relative to the sliding
surface, the density, the viscosity, and the film thickness, in
accordance with equation (6b);

. .
4 that the resultant representative gradient dlr and the re-
s

sultant mean velocity of flow u, for one and the same surface have
the same direction;

5 that such directions for stationary and sliding surface will
not necessarily coincide, see Fig. 4.

These assumptions, and (4) and (5) in particular, lead to the
following slightly generalized form of (6a) and (6b):

P 5l
' ds (pu,h)""ﬂ
= [
put n

where coordinate s and suffix s indicate the common direction of
the resultant pressure gradient and the resultant mean flow
velocity;

(6f)

in which, for the stationary surface, the pressure gradient

1 olp +
@Pra io the vectorial resultant of components - (;2_311) and
ds ox
%:ﬂ and mean velocity 1, is the vectorial resultant of com-
Y

ponents u, and uy, = uy/
in which, for the sliding surface, the pressure

dp,y, . x
gradient %‘ is the vectorial resultant of components
ds

olp — ) olp — )
2= and ———
ox Y
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and mean velocity u, is the vectorial resultant of flow components
(u, — U)and u,;

where the 2y coordinate system lies in the plane of and is attached
to the stationary surface;

where the y direction is at right angles to the sliding direction;
where z is the sliding direction;

and where u, and u, are the mean velocities of flow relative to
the = and y-directions, respectively.

Thus, equations for the stationary and the sliding surface can be

derived:
1 Stationary Surface, By suitably resolving the resultant rep-

resentative pressure gradient

and the resultant mean flow velocity
1, = (U1 u,g)l/’

in z and y-directions, it follows from formula (6f)

—h2 o+

i {P(u,=+u,=)‘/=h ™
— =ny {——F— (7a)
puy(u? + uuz)‘/; n
22 @+ )

E”” . T’l_ = n {.(J(_U;f_‘f— uﬂ(z)u_zh}% (7b)
puy(ut 4w n

2 Ssliding Surface. By suitably resolving resultant gradient

d 1(p —

Epﬂ' = ((Ld ) and velocity u, = { (u, — U)? + w2} '/*in z and
s s

y-directions, it follows from formula (6f)

&
or _
plu, — U, — U + w2}

o 1 fag, Ty
=i [mu,__b )2+ ul,_g} h:l (7¢)
n

—h (p — m)

0
—h a—i,f (p — m) = [PI (u, — )2 + _uy.!} |_,-2.']m‘,
Puy{ (u, — U+ uyﬂl s ]

(7d)

In the original limiting case of parallel flow directions (where
the Aow component u,, at right angles to the sliding direction of
the surface, reduces to zero), equation (7a) reduces to (6a) and
equation (7¢) to (6b).

Equations (Ta—d) have been written in such a way that the
fictitious pressure gradients can be easily eliminated. There-
fore, equations can be derived giving gradients of the actual
pressure in the lubricant film, as follows:

h? 14-my T
- n_i’f" 2_2 (ﬁ) = 1/ 3[)",({)':2 + UM 2
14ma
(0 — I =2+ U 2 E (8a)
h? o 1+my 1+_mn_
a 1}_} ég (pﬁﬁ) = 1/ ;_U,‘,(Uﬂ,2 + U 2
1+’f*_°.z_
+UU. — 1+ U2 2 ) (8D

where
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Flow with respect to sliding surfoce,

Fig. 4 Flow in mutually perpendicular directions

U, = Yz and U, = % are normalized velocities of flow. (8b)

This way of formulating the basic equations for the turbulent
lubricant film has advantages in comparing theoretical and
experimental results. It can be shown from the derivation that
only a minimum of experimental information is required.

(@) Tt is possible to derive the magnitudes of ne and my from
a flow experiment in which pressure flow is the only type of flow
to occur. It is particularly the magnitude of no that matters.
The magnitude of me need not be known accurately, provided
the absolute value is much smaller than unity, since in the
formulas (8a) and (8b) me appears only in the 1/x(1 + mo)th
power.

(b) Tt is possible to derive the quantities and m,; from an
experiment with drag flow. If however, only the pressure build-
up in a bearing is required, it would suffice to determine whether
ny and m; do not deviate too much from ny and me, respectively.
In fact, it proved possible, thanks to the introduction of a fieti-
tious pressure, to derive the equations (8a) and (8b) in which
the quantities n; and m no longer appear.

Inertia Effects Other Than Turhulence

A disadvantage of the foregoing equations might be the fact
{hat one of the two bearing surfaces has been assumed to be
stationary. In many bearings either surface might move with
respect to the lubricant film as a body and it is convenient to
attach a new frame of reference x,y to that body of the film.
Now, let the velocity of the new coordinate system x, y, be in
the z-direction. Further, let the meaning of symbol U no longer
be restricted to sliding speed as in the previous frame of reference
but let the meaning of it be extended to the sum of the speeds of
the two surfaces (u and us) with respect to the new coordinate
systemx,y: U =w +wor U + Us=1land Uy = U, Uy =
U, + U, This generalizing transformation yields:
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nU oy \pUh
1+4my

i 1/"&"0 iUY((U, — Ty + U\rz) g

b o

14my
+ Uyl(Uy — U2+ Uy 2 % (9b)
and

U+ U:=1 (9¢)

The presence of inertia effects other than those inherent in
furbulence may be incorporated most concisely in equations
(9a) and (9b) thanks to the facts that the pressure is explicit and
that the coordinate system is stationary with respect to the shape
of the wedge. To this end the following terms must be added to
the right-hand side of equations (9a) and (9b)

7 \™ | h oUy -1 U,
- —— + hlUy— + hlUy — 0
* (pl-’ho) {l..-' ot ERLCL Ox + hUy o (10a)
and
7 \™ |h 0Uy Uy aU,
T\ = — —Y L QU,- W, — 10b
(P("ho) |U ol T Al ox + hUy dy ( )
respectively. In terms (10a) and (10b) the acceleration terms
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( E)tx’ etc.) are correct from a physical viewpoint. However,

. S — oUy 2
the convective inertia terms (U, e etc.) are not entirely
correct. This is due to the fact that the products of averaged
flow velocities Uy and Uy instead of averaged products of local
flow velocities are inserted in (10e) and (10b). However, pro-
files of the local flow velocities are known to be rather blunt.
Thus, the difference between the product of two averaged ve-
locities and the averaged product of two local velocities can be
expected to besmall. Indeed, convective inertia terms are under-
estimated. However, such an error is permissible if the terms
are a second order effect as far as pressure build-up is concerned.

Comparison of the Bulk-Flow Theory and Theories Based
on the Law-of-Wall and the Mixing Length Concept

All equations, that in the various theories give pressure and
flow in a turbulent lubricant film, are semiempirical and contain
two empirical constants. The main difference between the bulk-
flow theory and the other two theories, based on law-of-wall and
mixing length concept, lies in the choice of the empirical con-
stants. In the first theory, empirical constants are derived
from measurements on bulk-flow between stationary or sliding
plates and in pipes. In the other two theories empirical con-
stants are derived from measurements of time-averaged flow
velocity profiles between stationary or sliding plates and in pipes.
In the first theory it is possible to derive the empirical constants
without mueh insight in the mechanism of turbulent flow. In
essence, the author's theory is not more than a generalization of
the well-known dependence between friction-factor and Reynolds
number first given by Blasius [2]. In the other two theories,
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empirical constants cannot but be derived after having intro-
duced a model of the turbulence mechanism. Indeed, the intro-
duction of the law-of-wall leads to a quantitative defermination
of the universal velocity profile near a wall and the introduction
of the mixing length concept leads to the determination of the
mixing length. However, any model accounting for the turbu-
lence mechanism is only valid for certain limiting conditions.
Thus the validity of these models is a matter of continuing dis-
pute. It is outside the scope of this work to take part in this
dispute. Therefore the practical results of the two theories
based on the law-of-wall as worked out by Elrod and Ng* [8]
and based on the mixing length concept as worked out by Con-
stantinescu [5] are compared with the author's theory and it
will not be discussed at length whether they have correctly
applied realistic, physical models.

Practical results of the two theories have been presented by
publishing graphs of magnitudes G, en G, derived from the
following two equations:

h* op
U, = -G, — —+1/ (11
= o0 o5 + 1/ 1la)
ht o
U,=—6,— = (11b)
nU oy

3 An earlier, linearized, version of this theory is by Ng and Pan
[10].
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The first equation gives the dimensionless, mean flow velocity in
the direction of sliding. It is seen to consist of a pressure or
Poiseuille flow component and a drag or Couette flow component.
The second equation (11b) gives the dimensionless, mean pressure
flow velocity perpendicular to the direction of sliding. In the
graphical results of the two theories it is shown that G, and @,
reach a maximum value of 1/;; for Reynolds numbers smaller
than 1000 so that the equations become identical to the equations
for laminar flow in that regime. In the turbulent regime equa-
tions for @, and G, can be derived by inserting U, and U, (equa-
tions (11a) and (11b)) into equations (8a) and (8b). The two
equations take the following general form:

oFP oP
fl-! (Gzr G&l: R! b‘iv’ ar) = 0 (123: b)
where
Uh
L
M
oP _ pht op
20X 7t o
L
oY gt oy

From these equations, numerical results are derived and plotted
in graphs originally used for theories based on law-of-wall and
mixing length.

In the first place, it will be assumed that the pressure flow
component is mich smaller than the drag flow component:

oP
—— (( 1
oxX /R

oP

G, o7 & /2R

GZ

These conditions are characteristic of self-acting bearings oper-
ating at moderate eccentricities. Under these assumptions,
equations (12a) and (12b) can be simplified to

atee (14my)
G, = - R~ . 13a
T (2 A+ me) (188)
21+m,
G, = R—{1+ms) (13b)
g
in which no = 0.066 and m, = —0.25 for smooth surfaces at

Reynolds numbers smaller than 105, see Davies and White [7]
and others. Graphical results are presented in Fig. 5.4 TRed
lines are results from the bulk-flow theory and based on the above
two formulas. Drawn black lines are results from the law-of-
wall (Ng and Pan) and dotted black lines are based on the mixing
length concept (Constantinescu). It ean be seen that the de-

Uh i
pendency between G, and B = £ is roughly identical for the

three theories in a regime characterized by 104 < R < 10°>. How-
ever, the mixing length theory appears to deviate from the other
two theories for the dependency between G, and R at different
values of the mixing length constant k= Thus the mixing
length theory appears to be less reliable than the other two theo-
ries.

Next, no limitations are placed upon the ratio between the
pressure flow component and the drag flow component. In Figs.
6 and 7, values for G, and @, derived from the general equations
(12a) and (12b) are plotted for several values of the dimensionless
pressure gradient and with Reynolds number based on sliding

4 Fig. 6.14 from Constantinescu [5].
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speed as the independent variable. In these figures, red lines
are results from the bulk-flow theory and black lines are results
from the law-of-wall theory. Drawn lines represent cases in
which pressure gradient and direction of sliding are roughly per-
oP

. oP
pendicular or — > —

Dotted lines represent cases in which
oY = 0X

oP
pressure gradient and sliding speed are almost parallel or >X >

oP
oY

It can be deduced from the two figures that it is unimportant
how the pressure gradient and sliding speed are directed with
respect to each other for R — « and R — 0, representing cases
with a dominant flow due to a sliding surface and a dominant flow
under the influence of a pressure gradient, respectively. Drawn
and dotted lines deviate in a regime where the two flow com-
ponents have the same order of magnitude. From a comparison
between red lines representing bulk-flow theory and black lines
representing law-of-wall theory, it follows that the two theories
show the general behavior outlined in the foregoing and that
they are in accordance in Fig. 6.

A comparison between red and black lines in Fig. 7 also shows
that discrepancies are present for the smaller Reynolds numbers
(R < 10%) and for the smaller dimensionless pressure gradients

oP oP
—f : 0e ).
(b.\' and o 21 )

Such increasing diserepancies for decreasing Reynolds num-
bers can also be seen in Fig. 5, which is representative of a
dominant drag flow.

It remains to be explained why good accordance does not ex-
tend over the complete turbulent regime and it remains to be
found which of the two theories is better in that part of the regime
in which no good accordance could be found. The explanation
can be found in Elrod and Ng's own work, see Fig. 8. In this
figure black dotted lines are based on law-of-wall theory and
black and red drawn lines are the result of experiments. The
vertical coordinate gives the friction factor

2r 8t

p“'mlz = P{'r!

and

the horizontal gives the lleynolds number

2pu,h pUR
7 7

When discussing this figure Elrod and Ng state that the law-
of-wall theory is asymptotically correct in the limits of high and
low Reynolds numbers. It is not to be expected, of course, that
any agreement be achieved in the transition region which extends

Ul
up until iR 104,
’?

Thus, it follows from Fig. 8 that a theory based on law-of-wall
is not so good in accordance with experiments than the bulk-flow
theory, which is directly based on experiments. The lack in
good accordance is restricted to the smaller Reynolds numbers.

The general conclusion is that the bulk-flow theory is more
reliable than the other two theories.

Conclusions

1 The bulk-flow theory is in excellent accordance with the
law-of-wall theory for turbulent flow in bearing films at the
greater Reynolds numbers,

2 The present theory is marginally better for turbulent flow
at the smaller Reynolds numbers,
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3 [Equations for turbulent flow in bearing films have now
been presented in closed form, (8a) and (8b).

4 No physical models for the turbulence mechanism have
been used when developing the new theory.

5 Empirical constants (2) used in the theory can be derived
from bulk-flow measurements and do not require the deter-
mination of flow velocity profiles.

6 The present theory is developed for turbulent flow in bear-
ing films interposed between smooth surfaces. Unlike other
theories, it can easily be extended to flow between rough and
grooved surfaces.
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DISCUSSION
V. N. Constantinescu®

One of the main results of the turbulent theories based on the
detailed analysis of the shear flow including turbulent stresses
[3], [8], [10] is the fact that although the phenomenon is locally
nonlinear, quasi-linear relations hold valid for some global char-
acteristics such as mean velocities, flow versus pressure gradients,
friction stresses wversus mean velocities and versus pressure
gradients, ete. Starting from this point, a bulk theory can in-
deed be developed, by using any theory which is able to produce
the mentioned global relationships or, as done in this paper, by

s Professor, Polytechnic Institute of Bucharest, Bucharest, Ru-
mania.
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using experimental data taken from some other similar flows.
Figs. 6 and 7 point out that even when superposition of stresses
due to Poiseuille and Couette flow exists, nonlinear behavior
in the relationship flow versus pressure gradients can be em-
phasized for large pressure gradients. It may be shown that a
similar behavior exists for friction stresses 7, 7, versus pressure

gradients. Indeed [5] although in the absence of convective
inertia forces the relation
op
e Tl
Ty Toa %

is always valid, linear dependence of both 7,, 7, on dp/dx is valid
approximately for the same conditions when parameters G,, G,
are depending only on Couette Reynolds number. In other
words, it may beshown [5] that in dimensionless form

hr n op

E'; xzq_nUaz

Tha = -?c"I:Bz; T =

if (B,) does not assume too large values. The Couette friction
stress 7, is a function of the Couette Reynolds number, e.g.,
when using the mixing length approach

- 7. =140.012 (”Tw‘)"'“

It would be of interest if the author plot 7, and 7, as functions of
parameter B, for various Reynolds numbers and compare his
results with those given, for example, in reference [5].
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The equation based on the mixing length for the Couette
friction stress 7. is nof in agreement with the one based on experi-
ments, cf. equation (3) in the paper using n; = 0.055 and my = —
0.25.

A comparison between wall shear stresses 7, and 73 based on the
bulk flow theory and the mixing length approach is of great
interest. However, the author does not have available reference
[5] at the moment of writing his reply. Therefore, the comparison
will be dealt with in a future letter to the editor of JourNAL oF
LusricaTioN TECHNOLOGY.
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